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ABSTRACT

The environmental chamber facility established at the Statewide Air
Pollution Research Center, University of California, Riverside, under a
joint Air Resources Board--University of California (Project Clean Air)
program has been employed to generate an experimental data base:

] For evaluating the effectiveness of various technical approaches
to oxidant control in the California South Coast Air Basin, and

® For assessing the impact of incremental control strategies, such as
new car emission controls, vehicle inspection, maintenance programs, etc.

The previously validated "surrogate" mixture of hydrocarbons (HC) and
oxides of nitrogen (NOX) has been irradiated, using a wide range of initial
concentrations and irradiation times, with particular emphasis on long-term
irradiations (> 9 hours) and the effect of added aldehydes. These experi-
ments provide data applicable to assessments of:

° Effects on oxidant production in the South Coast Air Basin that
m?ght have resulted from full implementation of the 1974-75 NOX retrofit
p&ogram for 1966-70 light duty motor vehicles.

° The degree of HC and NOX control required to meet air quality
s%andards for oxidant for downwind areas of the South Coast Air Basin, and

. Effects of aged smog on oxidant production.

Preliminary work has also been carried out concerning the design of
dynamic chamber experiments which would attempt to more realistically
simulate air parcel transport. Thus, a diffusion model has beem employed
to investigate the rates of dilution and fresh pollutant addition occurring
during characteristic air parcel histories in the South Coast Air Basin.

As a result of the disclosure, in June 1974, of differences in ozone
concentrations measured by different potassium iodide (K1) calibration
procedures, and because accurate ozone measurements are critical in this
research program, we undertook an investigation of the stoichiometry of
the 27% neutral buffered potassium iodide (NBKI) method for ozone ambient
concentrations using long-path infrared spectroscopy. Results of this
investigation and their implications for the existing oxidant air monitoring
data base in the South Coast Air Basin are presented here.

This report was submitted in fulfillment of contract No. 4-214 by the
Statewide Air Pollution Research Center, University of California, Riverside

under the partial sponsorship of the California Air Resources Board. Work
was completed as of June 30, 1975.
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EXECUTIVE SUMMARY

In order to provide an experimental data base relating to major
unresolved issues of photochemical smog formation, the SAPRC environmental
chamber facility was designed and constructed with support from the
California Air Resources Board beginning in 1970. Upon completion of the
facility in early 1973, an experimental program was undertaken to generate
a detailed data base for establishing the quantitative relationships
between initial hydrocarbon (HC) and oxides of nitrogen (NOX) precursor
levels and production of photochemical oxidants, ozone in particular. A
unique smog "'surrogate' was developed (see Table 1) to simulate the HC-—NOX
primary pollutant mix in the South Coast Air Basin which results from all
major sources, including natural gas leaks, evaporative and geogenic
emissions, as well as auto exhaust. The data obtained from irradiation
of this mixture in the SAPRC all-glass chamber under simulated atmospheric
conditions, when compared with ambient air monitoring data and the results
of irradiations of ambient air in the all-glass chamber, indicated that a
reasonable simulation of the atmospheric situation could be achieved.

In 1973, a systematic study of the effect on production of oéone
resulting from across-the-board reductions in noﬁmethane hydrocarbons
(NMHC) , methane and carbon monoxide (CO) levels was begun. Experiments
have been carried out for 5 levels of surrogate hydrocarbons_(NMHC ~ 2.6,
2.1, 1.3, 0.69 and 0.46 ppmC) and with several NOX concentrations below
0.6 ppm. Extensive data including the specific determination of ozone,
nitrogen dioxide, and peroxyacetyl nitrate, as well as measurement of

nitric oxide, CO and formaldehyde, and detailed analysis for C hydro-

1%
carbons including oxygenates and aromatics were obtained for more than 60

surrogate experiments in 1973-74. Continuation of this study in the

current year has more than doubled the surrogate data base and the composite

data set has been applied to:

(a) an assessment of the potential effect on ambient ozone levels in
the South Coast Air Basin resulting from an "incremental" control strategy,
i.e., the California NOX retrofit program for 1966~70 light-duty motor

vehicles;

ix




Table 1. Surrogate Mixture for Simulation of 6~9 AM Ambient Air

Pollutant Burden in Los Angeles

Pollutant group

concentration

Individual components,
nominal concentration

Aromatics

Saturates

Fuel olefins

Cracking products

Oxygenates

Natural gas components

Carbon monoxide

Nitrogen oxides

Toluene, 115 ppbC
m—Xylene, 325 ppbC

n—-Butane, 785 ppbC
2,3-Dimethylbutane, 615 ppbC

cis-2-Butene, 60 ppbC
2-Methyl~-2-butene, 70 ppbC

Ethylene, 84 ppbC
Propene, 35 ppbC
Acetylene, 101 ppbC

Formaldehyde, 54 ppbC
Acetaldehyde, 5 ppbC
Acetone, 6 ppbC

Ethane, 160 ppbC
Propane, 40 ppbC
Methane, 2800 ppbC

NO, 270 ppb
NOZ’ 30 ppb
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(b) an evaluation of ozone production in downwind portions of the
South Coast Air Basin based on extrapolation of the 6-hour HC-—NOX—O3 data
base (the majority of the surrogate experiments) to 9 hours with validation
provided by about twenty 9—hour (or longer) runs carried out in the current
year;

(c) a study of the "aged smog" phenomenon using added aldehyde as
a typical aged smog component.

The design of smog chamber experiments which will more accurately simu-
late full-day irradiation and air parcel transport effects has been initiated
using transport and diffusion models in conjunction with meteorological and
ambient air monitoring data to analyze characteristic air parcel trajectories.

As a result of the revelation in June 1974 of serious differences in
existing calibration methods for ozone, we investigated the 2% neutral
buffered potassium iodide (NBKI) method which had been employed in the SAPRC
chamber program with the following results: ‘ '

(a) the first determination of the absolute absdrptivity of the 9.6 p
infrared band of ozone; |

(b) determination of the stoichiometry of the NBKI method as a
function of the relative humidity of the sample: ‘ |

(c) establishment of the consistency of the infrared method of
measuring ozone with the uv absorption method in a collaborative study
with W. B. DeMore;

(d) generation of an internally consistent set of oxidant air quality
data for the California South Coast Air Basin.

Results from the studies cited above are summarized here and are
described in more complete detail in Sections III-A through ITI-F.

NOx Retrofit Program. One approach to achieving conditions which

will ultimately meet the Federal ambient air quality standard for oxidant

is to implement a series of emission control programs, each of which produces
a small but significant reduction in HC and/or NOX emissions. The California
program to retrofit 1966-70 light-duty motor vehicles with a device to con-
trol NOX emissions, which was instituted in 1973, was one such "incremental”
control strategy. As a part of a review of the effectiveness of this
strategy, the HC—-NOX—O3 data base, which had been generated in the ARB-

supported surrogate chamber program described above, was utilized to

xi




evaluate the changes in ambient ozone levels which might be expected on the
basis of observed reductions in NOX and HC emissions achieved with the
retrofit devices. To carry out such an evaluation, it was necessary to

have, in addition to the HC—NOX—O data base, (a) data concerning initial

(i.e., precontrol strategy) ambieit levels of HC and NOX present in the
early morning hours, (b) an estimate of the emissions reductions to be
achieved by the NOX retrofit control program, and (c) a method for pre-
dicting the ambient HC and NOX levels resulting from such emission reductions.
Briefly, the initial HC and NOX levels were based on ambient air
monitoring data from the Los Angeles Air Pollution Control District at
the downtown Los Angeles (001) and Pasadena (083) stations. Average 6-9 am
average NMHC and NOX levels in Los Angeles for the 10 worst oxidant days
in Pasadena in 1973 were calculated to be 2.35 ppmC of NMHC and 0.336 ppm
of NOX (NMHC/NOX = 7). Data concerning the effectiveness of the retrofit
devices in reducing NOX and HC's were obtained by the ARB in a number of
certification tests and surveillance programs which tested emissions from
cars under both laboratory and field conditions. The ARB also provided
projections of the changes in total emissions (i.e., from all sources) to
be expected based on the surveillance data for reductions in exhaust
emissions. It was then assumed that the percent change in total emissions
resulting from installation of NOX retrofit devices would give a corre-
sponding change in the ambient nonmethane hydrocarbon (NMHC) and NOX
levels.
The chamber data for ozone levels (after six hours of irradiatiom)
as a function of initial NMHC and NOX levels as presented in Figure 1
readily gives a qualitative understanding of the changes in ozone levels
to be expected for incremental changes in the precursor NOX and NMHC levels.

Starting at the precontrol ambient conditions it can be seen that:

e a decrease in emissions of NOX which is accompanied simultaneously
by an approximately equivalent reduction in NMHC (i.e., constant NMHC/NOX)
should lead to a reduction in ozone levels, whereas z reduction in NOX
emissions (i.e., increase in NMHC/NOX) alone will tend to increase ozone

levels.

The magnitude of these effects, of course, depends upon the specific

emission levels involved and does not take into account other possible

Xii
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benefits from reduced NOX emissions, such as reduced PAN and nitrate
aerosol levels.
To provide a more quantitative evaluation of changes in ozone levels

expected from various NOX and/or NMHC concentration changes, equation (1)
A03(Z) = -1.29(% HC reduction) + 0.96(% NOX reduction) (1)

was derived from the data of Figure 1 and is applicable over a region
cqrresponding to as much as a 107 reduction imn NOX and/or NMHC and to
locations such as Pasadena (i.e., 4-6 hours downwind from the principal
6-9 AM emission sources). In collaboration with John Holmes and Frank
Bonamassa of the ARB, a similar equation was developed for far downwind
locations in the South Coast Air Basin (e.g., Upland) by extrapolating
our 6-hour chamber data for 10 hours (prior to the validated extra-
polation discussed in the following section).

From the quantitative evaluations of the data for changes in emissions

provided by the ARB, it was concluded that

e Tor most of the vehicle emissions data obtained during partial
implementation of the NOX retrofit program, either no change or small
increases (1-4%) in ozone would result in the western end of the South
Coast Air Basin, while somewhat larger (3-10%) decreases in ozone would
occur downwind in eastern portions of the South Coast Air Basin for full

implementation of the program.

Development of Air Parcel Transport Simulation Methodology. The goal

of this program was to provide a basis for designing chamber experiments
which would realistically simulate air parcel transport, in locations such
as the Californmia South Coast Air Basin, with respect to both injection
of fresh oxidant precursors and dilution and dispersion effects. The first
step in this development was an investigation of characteristic air parcel
histories in the South Coast Air Basin, with special emphasis on an air
parcel which followed a trajectory from southeast Los Angeles to Pasadena
between approximately 5 AM and 12 noon on July 25, 1973, the day of highest
oxidant observed in 1973 (0.45 ppm oxidant observed in Pasadena).

The trajectory of an air mass was determined by numerical interpola-
tion on the meteorological data recorded at the various air monitoring

stations within the South Coast Air Basin. The trajectory program was taken

xiv
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directly from the DIFKIN model of the General Research Corporation. The
wind direction and speed was determined at a given point and used to trace
the air parcel trajectory in a forward or backward direction from that point.
Having determined the air parcel trajectory, the air quality within that
parcel was estimated, using a similar interpolation scheme. In this case,
the pollutant concentrations reported at the various air monitoring stations
were interpolated by using a similar weighting factor for the three closest
stations. The concentrations of the pollutants reported were then estimated
at specific times of day along the trajectory.

To determine the dilution and addition rates for a given air parcel,

a diffusion model is needed to account for the transport of pollﬁtants in
vertical and horizontal directions. For the GRC-DIFKIN model, which was

used in this study, the horizontal turbulent diffusion fluxes, both normal

to and along the wind trajectory, were assumed negligible, compared to fhe
advection and vertical diffusion. In order to generate a set of diffusion
coefficients, which are realistic for the given day being studied, the carbon
monoxide air quality data were used as a verification test. The diffusion
coefficients were first estimated from the temperature gradient data obtained
for the particular day of interest. They were then adjusted to yield calcu-
lated (from.the diffusion model) ground level carbon monoxide concentrations,
which compare well with those estimated from the interpolation on the air
quality data. Using these time-dependent diffusion profiles, the concen-
tration of the other primary pollutants, namely NOX and hydrocarbon, were
then determined for the air mass.

The addition rates of fresh pollutants are related to the emissions
inventory used for the diffusion model. The dilution rate can also be
determined from the results of this model. In general, the accumulation
of pollutants within a given air mass is determined by integration of the
concentration profile at the beginning and end of the time period under
consideration. If the particular air mass of interest is bounded by the
ground surface plane, then the incoming mass is determined directly from
the source inventory, and the outgoing flux by the difference between the
accumulation and the incoming flux. If the lower boundary of the air mass
is not the ground plane, then the incoming or.outgoing mass flux can be

determined by using the Fickian diffusion equation and the turbulent

Xv



diffusivities assumed in the diffusion model. The term "dilution" indicates
that there would be a net reduction in the concentration of primary pollu-
tants in the air mass. This is often not the case for trajectories which
remain over areas of high primary pollutant fluxes. Thus, the dilution
and/or buildup of pollutants within the air mass is strongly dependent upon
the trajectory and the time of day for a given trajectory. This method for
determining the trajectory and air quality for an air mass was applied to a
given trajectory for July 25, 1973 and the results are presented in Section
ITI-C.

In summary,

e A methodology has been developed to calculate both pollutant ad-
dition and dilution rates required during dynamic smog chamber experiments
in order to more accurately simulate full-day irradiation and air parcel
transport effects for characteristic air parcel trajectories in an air basin
for which ground level meteorological and pollutant concentration data are

available.

Long-Term Irradiations and Aged Smog Studies. Achieving reductions

in oxidant formation in regions downwind of major emission sources requires
data concerning the oxidant-precursor relationships which occur (a) during
iong-term (i.e., ~6-10 hrs) irradiation and transport pericds, and (b)
during multiple-day irradiatioms of polluted air masses. At the time of
the present study, few (if any) smog chamber data relevant to this problem
were available.i Specifically, most, although not all, published data from
previous chamber studies are for irradiation periods of 6 hours, or. in mauny
cases, for 2-4 hours. Accordingly, we have attempted to provide data of
utility with regard to assessing the dependence of oxidant formation on
initial HC and NOX concentrations for irradiation periods longer than 6 hours.
Two approaches have been taken. First, we have experimentally generated
new 03—N0X—HC data for 9-hour or longer irradiations for NMHC and NOX concen—
trations corresponding to present ambient levels in the South Coast Air Basin.
Second, we have developed methodologies for extrapolating the previously
obtained 6-hour SAPRC-ARB data base to periods as long as 10 hours. Detailed
results from these studies are presented in Section ITII-D. Using these

results we have calculated the 9-hour ozone concentrations for 60 sets of
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initial NMHC and NO concentrations (corresponding to 60 experlmental runs),

and the values are shown in Figure 2. Thus,

e The previous 6-hour HC—NOX—O3 data base has been extrapblated to
9 hours on the basis of 9-hour HC—NOX surrogate irradiations conducted during
the current program. These data are believed to be applicable to assess-
ments of the effects of control strategies on oxidant concentrations in the

downwind portions of the South Coast Air Basin.

Having obtained 9-hour ozone concentrations it was possible to examine
the dependence on irradiation period of the maximum in the ozone vs initial
NOX function (for a giwen initial NMHC conééntration). " An example of this

dependence is shown in Figure 3 from which we conclude that:

@ At intermediate NO and NMHC levels (i.e., NMHC/NO ratios of ~5 to
~15), the maximum ozone levels occur at NMHC/NO ratios whlch are determined

largely by the irradiation period.

Aldehydes occur in the atmosphere both as primary emissions and as the
result of atmospheric photochemistry and are‘important photoinitiators. 1In
an "aged smog" study, irradiations of the standard surrogate mixture (2450
ppbC nonmethane HC, 0.33 ppm NO < 7.0 ppm CO, and 2, 8 ppm CH4) were carried
out for several different 1nit1al formaldehyde concentrations. The quanti-
tative effects of 1ncreasing HCHO on both initial rates of reaction and on
6-hour ozone levels are summarized in Section ITI-D. The 6-hour ozone
concentration as a funétion of HCHO is shown graphiéally in Figure 4. An
experiment carried out with acetaldehyde (CH3CHO) instead of HCHO gave |
comparable results. The effect of added HCHO on ozone levels throughout a
series of 9-hour irradiations of the HC—NOX surrogate mixture is shown in

Figure 5. The enhancement in ozone production was striking. Thus,

® Ozone production was experimentally observed to be catalyzed by
the addition of formaldehyde and acetaldehyde to the HC—NO surrogate

mixture and to exert effects throughout a 9-hour 1rrad1at10n period.

Investigation of the 2% Neutral Buffered Potassium JTodide Method for

Ozone. The accurate measurement of ozone concentrations is cr1t1ca1 to the

development of any new major HC~NO —03 data base, such as the one being

generated in this research program. In June 1974, at a time when a major
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body of data relating ozone production to initial HC and NOX levels had
already been generated in this chamber program, it was disclosed by the
California Air Resources Board (ARB) and the Los Angeles Air Pollution
Control District (LAAPCD) that a significant discrepancy (approximately 30%)
existed between ozone concentrations measured by their respective calibra-
tion procedures. Inasmuch as the 2% neutral buffered potassium iodide (NBKI)
method for determination of ozone (i.e., the ARB method) had been employed in
our laboratories in the calibration of ozone monitors used in our HC—NOX—O3
research program, we felt that it was critical to understand the implications
of this discrepancy for our data. Thus, we undertook an investigation of

the stoichiometry of the 2% NBKI method at ambient concentrations of ozone
using long—-path infrared (LPIR) spectroscopy.

In the first phase of this investigation the abscolute absorptivity of
the 9.6-micron band of ozone was determined as a function of both spectral
resolution and abundance, since such data have not been previously reported.
The vesults from this study are summarized in Figure 6.

e At a spectral resolution of approximately 1 cwfl the absorptivity
was determined by two independent methods to be 4.23 x 10»4 ppm_l m_l.

In the second phase of this investigation, the correlation between the
2% NBKI method and the infrared absorption of ozone was investigated over
an ozone concentration range from 0.1 to 1.2 ppm and as a function of relative
hunidity using an LPIR spectrophotometer interfaced to the SAPRC 5800~2
evacuable environmental chamber. Data obtained for relative humidities of
approximately 18 and 50% are shown in Figures 7 and 8, respectively. Our

principal findings were that:

e The stoichiometry of the 2% NBKI ozone analyzer calibration procedure,
employed by the California Air Resources Board from 1960 until June 1, 1974,
ranged from ~1.12 to ~1.25, depending upon whether the relative humidity of

the sample stream was high or low, respectively.

e The infrared method employed in this investigation is comnsistent
with the UV absorption method as shown in a ccllaborative study with W. B.
DeMore in which the linear regression equation between LPIR and UV measure-
ments of ozone samples in dry matrix air (RH ~37%) was [03]UV = (0.99 * 0.02)
[03}IR + (0.016 = 0.011).
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In the final phase of this investigation, SAPRC staff members analyzed
the implications for the historical oxidant data base in the South Coast

Air Basin of placing the data obtained by both the LAAPCD and the ARB on

a common calibration basis. Thus,

e An internally consistent set of oxidant air quality data for the
California South Coast Air Basin was generated by scaling existing data for
Los Angeles County air monitoring stations by a factor of 1.1 and existing

air quality data for non-LAAPCD stations by a factor of 0.8.

e The scaled oxidant data show that, contrary to the indications of
the original data, the cities of Azusa and Pasadena (in Los Angeles County)
have higher yearly total oxidant levels than the cities of Riverside and

San Bernardino in the eastern portion of the South Coast Air Basin.
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RECOMMENDATIONS

e Very recent disagreements in the literaturé concerning the
precise ratés of dilution and fresh pollutant addition which should be
employed in air parcel transport simulation studies in environmental
chambers indicate that additional investigation and better mefhodologiés

are required in this research area.

. Additional data from long-term irradiation (> 9 hour) experiments
are required to more fully elucidate oxidant-precursor relationships which

are applicable to regions considerably downwind from major urban sources.

e There continues to be a need for consistent and experimentally
valid hydrocarbon‘reactivity assessments and recent SAPRC environmental
chamber studies appear promising in this regard. These studies should

be continued on a formal basis.

o The HC—NOX—oxidant data base which has been generated in this
program should now be extended by the inclusion of SO2 and by investiga-

tion of SO2 to sulfate aerosol conversion rates under simulated atmospheric

conditions.

© In the course of the added aldehyde experiments and HC~NO ~ozone
studies reported here and in our previous report (Flnal Report - Contract
No. 3-017), it has been established that the initial formaldehyde concen-
tration is a critical parameter in the rate of formation of ozonme. However,
the uncertainties associated with the chromotropic acid method for formal~
dehyde, particulérly at the low (< 100 ppb) concentrations present in this
study, have complicated quantitative interpretation of our results. It,
therefore is important that a'systematic study of the applicability and

reliability of the chromotropic acid method be carried out.
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ALL OZONE AND OXIDANT DATA REPORTED IN THIS
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I. INTRODUCTION

A. Scope and Purpose

Despite two decades of intensive research concerning the photochemistry
of polluted atmospheres, and the concerted attention during the past ten
years of local, state, and federal air pollution control agencies to the
problem of reducing photochemical oxidant in urban areas, substantial
uncertainty still remains as to the most cost-effective and sbéietally
acceptable means of solving this major environmental problem. Three
critical issues which still have not been adequately resolved are (a) the
degree to which oxides of nitrogen (NOX), as well as nonmethane hydro-
carbons (NMHC), must be controlled to achieve optimal reduction in oxidant
formation;l (b) whether ambient air monitoring data, smog chamber data, or
both, should provide the basis for developing oxidant control strategies;
and (c) whether different strategies must be pursued to control oxidant in
downwind regions, as opposed to those strategies which apply to urban
centers, and, if so, whether the differing approaches to levels and kinds
of source control can be reconciled.3

A major goal of this continuing research program is to provide an
experimental data base with which further resolution of such issues can
be achieved. Toward this end, the SAPRC environmental chamber‘facility,
which was designed and constructed with support from the California Air
Resources Board,4’5 has been utilized6 for the past two years in a study of
hydrocarbon-oxides of nitrogen (HC~NOX) mixtures irradiated under con-
ditions simulating those found in the California South Coast Air Basin.

The systems studied included HC and NOX concentrations ranging from those
found in present day polluted atmospheres down to those to be expected from
the implementation of emission control strategies aimed at meeting the State
and Federal ambient air quality standards.

Emphasis during the current period has been on extension, refinement,
and application of the oxidant-precursor data base generated in this pro-
gram and some 80 additional chamber experiments have been conducted.
Specific applications carried out during the current contract period include
(1) the utilization of the SAPRC chamber data to an assessment of the impact

of the NOX retrofit program for 1966-70 light duty vehicles in the South



Coast Air Basin with respect to reduction (or increases) in ozone levels;
(2) the extension of our program to longer irradiation times, with a view
toward evaluating oxidant-precursor relationships during the critical
later stages of a long irradiation day; and (3) an investigation of the
effects of added aldehydes on oxidant-precursor relationships as part of
our continuing study of aged smog effects.

Preliminary work has also been carried out concerning the design of
the dynamic chamber experiments which would attempt to more realistically
simulate air parcel transport in a location such as the South Coast Air
Basin. Thus, a diffusion model has been employed to investigate the rates
of dilution and fresh pollutant addition occurring during characteristic air
parcel histories. Finally, as a result of the disclosure, in June 1974, of
differences in ozone concentrations measured by different potassium iodide
calibration procedures, and because accurate ozone measurements are critical
to the acquisition and interpretation of the data being generated in this
research program, we undertook an investigation of the stoichiometry of the
2% neutral buffered potassium iodide method for ozone at ambient concentra-
tions using long-path infrared spectroscopy. As an adjunct to this experi-
mental program, SAPRC workers also analyzed the implications for the
historical oxidant data base for the South Coast Air Basin of placing the
data obtained by both the Los Angeles Air Pollution Control District and
the Air Resources Board on a common calibration basis.

The specific results obtained with respect to each of the subprograms
outlined above, as well as analysis and discussions of these results, are
given in Section III. In the section which follows immediately, a brief

background to this SAPRC-ARB program is provided.

B. Background

Previous Smog Chamber Studies. For more than 20 years, a great variety

of smog chamber data have been generated concerning many facets of the
mechanism of photochemical air pollution, and considerable insights into
the‘kinetics, mechanisms, and products of this phenomenon have been gained.
Unfortunately, with respect to the formulation of quantitative control
strategies, most, if not all, early chamber data suffer one or more

serious limitations, which can considerably limit their applicability to



ey ] ey

By

plammy L

| peracman

oy

ey Fee—aEy

PoORSTIC N

»

o

premin

the real atmosphere. Such limitations include the use of pollutant con-
centrations significantly higher than those encountered in the atmosphere,
use of hydrocarbon compositions bearing little resemblance to current
hydrocarbon mixes in urban atmospheres, substantial deviation in irradia-
tion intensity and spectral distribution from that occurring in the tropo-
sphere, and limitations in analytical methods imposed by the state-of-the-
art at the time the studies were conducted.

Previous chamber studies dealing with the interrelations of HC, NO
and photochemical smog manifestations have generally utilized either auto
exhaust or pure organic compounds (e.g. propene or butane) as the hydro-
carbon component. Studies using pure hydrocarbons, either singly or in
simple mixtures have provided valuable information on the mechanisms of
reaction and on the relative reactivity of these compounds,%.12 but they
are not dirgctly applicable to predicting the production of oxidants under
ambient conditions which involve complex multi-component mixtures of hydro~
carbons. Chamber studies utilizing auto exhaustlzm17 have more closely
approximated the pollutant composition found in ambient air and have pro-
vided the basis for the view that both NMHC and NO must be controlled in
order to reduce photochemical oxidant. The relatlvely recent work of
Dlmltriades 6,17 is the most important example of such a study.

In his investigations, Dimitriades attempted, with considerable suc-
cess, to deal with many of the problems encountered in previous smog
chamber studies and consequently generated a useful body of data with
respect to control strategy formulations. Recently these data have been
employed 8 »19 by air pollution scientists and control officials in their
attempts to assess the relative reductions in ambient oxides of nitrogen
and hydrocarbons required to effect various reductions in photochemical
oxidant. This renewed attention to smog chamber data has resulted from
the realization that ambient air monitoring data, which to date have formed
the sole basis for the Federal approach to controlling photochemical
oxidant, suffer serious limitations, not oniy in accuracy and detail, but

also with respect to their applicability to oxidant problems in areas

other than urban centers, a problem which has become of increasing concern

. 20
in recent years.




The Present Study. For the SAPRC-ARB study of precursor—-oxidant

relationships, a mixture of hydrocarbons, carbon monoxide and oxides of
nitrogen (a primary pollutant "surrogate'--see Table 2) was chosen to
represent the ambient air pollutant burden from all sources in the South
Coast Air Basin of California.21 This choice was made, in part, to avoid
four serious difficulties associated with the use of auto exhaust: (1) non-
reproducible starting composition, (2) particulate contamination of the
chamber, (3) inability to achieve very low NOX concentrations, and (4) the
absence in auto exhaust alone of other hydrocarbons which are found in
abundance in the Los Angeles atmosphere from natural gas and evaporative
and geogenic sources.

Based on direct comparisons with observed ambient air monitoring
data and chamber -irradiations of ambient air,z1 the following criteria
were selected for determining the acceptability of the surrogate mixture:

(1) oxidant concentration (2% neutral buffered KI method) = 0.45 ppm
(uncorrected) after 3-4 hours of irradiation;

(2) nitrogen dioxide peak concentrations < 0.25 ppm;

(3) aldehyde concentrations after 3-4 hours of irradiation should be
100-200 ppb each of formaldehyde, and total aldehydes except formaldehyde;

(4) comparable rates of hydrocarbon disappearance for the surrogate
mixtures and an ambient sample irradiated in the chamber under comparable
conditions.

Using these direct comparisons, as well as several iundirect criteria,
it was found that the standard surrogate mixture with the nominal concentra-
tions given in Table 2 gave satisfactory results when irradiated in the
glass chamber at a light intemsity 707 of the maximum possible.21 In the
first year (1973-74) following this validation of the "surrogate', more
than 60 irradiation experiments were conducted in a systematic study of the
effect on production of ozone and oxidants of across—the~-board reductions
in hydrocarbon and carbon monoxide levels at nitrogen oxides concentrations
varying from very low levels to levels approaching worst day ambient concen-—
trations in Los Angeles (~0.4 ppm). Table 3 summarizes the average observed
initial methane (CHA)’ carbon monoxide (CO) and nonmethane hydrocarbon (NMHC)
concentrations employed for irradiationms at each of the five sets of concen-
trations studied.6 Most of the irradiations were carried cut for 6 hours

with a few of ~2 hour duration.
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Table 2,

Prototype Surrogate Composition and Typical Central SCAB
Concentrations of Components21

Typical

Carbon-Weighted Concentration

Variable Component Mole (percent) (ppb or ppbC)

1. Nitrogen

oxides 100. o: Total 300 ppb
Nitric oxide 90.0 270 ppb

Nitrogen dioxide 10.02 30 ppb

"Automotive

hydrocarbons" - 100.0 Total 2201 ppbC
2. Aromatic Toluene 5.22 115 ppbC
m-Xylene 14.77 325 ppbC
3. Saturates - n-Butane 35.66 785 ppbC
‘ 2,3-Dimethylbutane 27.94 615 ppbC

4. Olefins .cis-Z—Butene 2.73 60 ppbC
2~Methyl-2-butene 3.18 70 ppbC

5. Cracking Ethylene 3.82 84 ppbC
products Propene 1.59 35 ppbC
Acetylene 4.59 101 ppbC

6. FID Acetaldehyde 0.23 5 ppbC
oxygenates = Acetone 0.27 6 ppbC

7. Formaldehydeb Formaldehyde - Total 54 ppbC

8. Natural gas® - 100.0 Total 3000 ppbC

Methane 93.34 2800 ppbC
Ethane 5.33 160 ppbC
Propane 1.33 40 ppbC

9. Carbon monoxide Carbon monoxide 100.02 Total 7000 ppb
Mole percent only.

b. Treated as a separate variable for analytical reasons; determined by
separate wet chemical method, as it gives little FID response and
cannot be analyzed by GLC methods at these concentrations.

¢. Includes background methane (V1400 ppb) in its definition.



Table 3. Average Initial Concentrations in Surrogate Experiments (1973-74)

NMHC cH4 co
(ppbC) (ppm) (ppm)
2610 2.8

2110 2.5

1310 2.1

690 1.8

460 1.6 1.4

The extension of this work during the current year, as outlined in
Section A above, is discussed in detail in the following sections. The
results of last year's experiments have been combined with those of the
current year and the composite data set has provided the basis for applica-

tion to evaluation of emission control strategies.
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IT. FACILITIES AND METHODS

A. Chamber Facility and Analytical Methods

Most of the experiments in this study were carried out in a 6400-liter
(226—ft3), all-glass (Pyrex) chamberzz’23
ratio of 3.4 m—1 (1.04?1). The dimensions of the glass chamber are 8' x

which has a surface-to-volume

8" x 4' (i.e., a flat box). Photolyzing radiation is provided by two
externally mounted, diametrically opposed banks of forty Sylvania 40-W
BL (black light) lamps, which are backed by arrays of Alzak-coated
reflectors. Half-lives for ozone decay, measured at various times in
this program under standard coﬁditions of temperature, relative humidity,
and light intensity, were > 25 hours in the dark and 12 to 15 hours with
irradiation. These half-lives are significantly longer than those
reported for other chambers with comparable dimensions, surface-to~volume
ratios, and light intensities and result in correspondingly smaller per-
turbations on ozone rates of formation and maximum ozone concentrations
in the glass chamber experiments.

The supporting analytical facilities employed in the glass chamber
studies are shown schematically in Figure 9 and.are described in detail
below. The on-~line computer data acquisition system was installed in

November 1974, and bBecame fully operational near the end of this program.

' Use of the computer system is greatly facilitating data handling for

measurements of physical parameters and concentrations obtained from con-
tinuous analyzers.

The SAPRC evacuable chamberzz’24

was employed in the investigations
of the stoichiometry of the 2% neutral buffered potassium iodide method
for ozone and the analytical methods used in this study are described in
Section III-E.

The current physical and chemical measurement methods and the range,
precision, and accuracy of measurement of each of these parameters are
given in Table 4. The details of the analytical and_data processing pro-
cedures are described below for each species or variable monitored. The
data obtaiﬁed (except for hydrocarbons) are tabulated for each run on.an
inorganic data sheet (Appendix A) and have not been corrected for losses

due to sampling from the chamber.
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0ZONE (03) was monitored by ultraviolet absorption analyzers (Dasibi-

1003 or AH-1003) calibrated against 2% neutral buffered potassium iodide.25

26,27 yat at ~50% RH this cali-

Since it has subsequently been demonstrated
bration procedure yields ozome values which are too high by a factor of
~1.25, all czone data reported have been corrected by a factor of 0.8.

TOTAL OXIDANT was monitored (in Rums 74-102) using a Mast analyzer

which was calibrated in tandem with the Dasibi ozone monitor using 2%
neutral buffered potassium iodide. The original calibration factor is
given on each data sheet. The oxidant data have been corrected by a
factor of 0.8 as discussed above. Data points were read from the strip
chart.

NITROGEN CXIDES (NO, NOZ’ and NOX) were monitored by chemiluminescent

detection (TECO 14B). The N02 and NOX modes of this and similar chemi-

luminescent NO—-NOX analyzers have been shown to respond quantitatively to

other nitrogen-containing compounds, such as peroxyacetyl nitrate (PAN)

28,29

and organic nitrates and nitrites. All NO, and NOx data reported

2
here have been corrected by subtraction of measured or interpolated PAN
concentrations.

CARBON MONOXIDE (CO) was monitored by gas chromatography (Beckman-

6800). The instrument was calibrated daily with a standard gas sample.

PEROXYACETYL NITRATE (PAN) was monitored by gas chromatography with
30,31

electron capture detection {GC-ECD). Samples were taken in a 100-ml
precision bore syringe and transferred to the GC sampling system as quickly
as possible. Peak heights were read from the strip chart and converted

to concentration units using a calibration function which was determined
periodically. ©PAN data are given on both the inorganic and hydrocarbon
data sheets.

32
FORMALDEHYDE (HCHO) was monitored using the chromotropic acid method.

Air from the chamber was drawn through a bubbler at the rate of 1 & min_l
and the total volume per sample was determined using a timer—controlled
shutoff system. Generally, a 30-min. sample was taken. The concentration
was recorded at the midpoint of this time interval, except for the imitial
value, which was taken in the 30 minutes prior to lights on, and the fimal
sample, which was taken in the 30 minutes prior to lights off. Absor-

bances were read on a Bausch and Lomb Spectronic 20, and calculations of

10
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the HCHO concentration from the absorbance and volume of air sampled

(HCHO vol) were made from the following equation:

HCHO(ug) X 2.037
HCHO (vol)

HCHO (ppm) =

where HCHO (ug) is taken from the least squares fit of the experimentally
determined calibration function of HCHO (ug) vs. absorbance. HCHO data
are given on both the inorganic and hydrocarbon data sheets.

RELATTIVE LIGHT INTENSITY (PD #2) was monitored using a photodiode (CL 905 HL)

equipped with a 338 nm interference filter and a 1.5—V, 30-K2 bridge.

The absolute magnitude of the voltage as read with a digital voltmeter is
reported. With this device, increasingly negative values correspond to:
increasing light intensity. The response function for the device has not
been determined quantitatively and the data are employed only for relative
information concerning the trend in the intemsity of a given set of lamps
over their useful life. The photodiode was positioned on one side of the
chamber facing the bank of lamps oﬁ the opposite side.

Late in this program, an EG & G Inc. absolute radiometer was installed on
the end of the chamber to provide an estimate of the magnitude of the
variation of 1ight intensity during the run. Values of the photon flux
in uW cm--2 near the beginning and end of each run are noted in the

comments on the data sheets and typically differed by less than 37%.

The SAMPLE TEMPERATURE was read from either a Doric Thermocouple

indicator (°F), using a thermocouple suspended in the chamber (TS2), or

from a 19-35°C (0.0l degree/division) thermometer hung free inside the

chamber close to the end window, but not in the direct light path (TS1).
RELATIVE HUMIDITY (RH) was measured using a Brady array (Thunder

Scientific). The response in volts (V) was converted to percent RH, using
the calibration function supplied by the manufacturer. The Brady array
was sent to the manufacturer for recalibration midway through this program.
Humidity data are unavailable for runs conducted during this‘period. '

HYDROCARBONS (HC) were monitored by gas chromatography with flame

ionization detection .(GC-FID), using the columns and methods developed by

Stephens and Burleson.33’34 Methane and C, HC's were analyzed using a

2
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5' Poropak N Column, CB_C6 HC's using a 36' 2,4~dimethylsulfolane column,
and aromatics and oxygenates using a special three-part columm. Oxygen-
ates were also monitored using a 10' Carbowax 600 column. Each GC was
calibrated frequently using specially prepared samples.33 Peak heights
were read from the strip charts in ppb using calibrated transparent over—
lay charts. Computer processing of the data includes calculation of the
concentration im ppbC for each data point. These data are given for each
run on the hydrocarbon data sheets (Appendix C). Further information to

facilitate use of the organic data is given at the beginning of Appendix C.

B. General Experimental Procedures

Following each experiment in this program, the glass chamber was
flushed with dry air provided by an air purification system35 {see Figure
10) for about 2 hours at a flow of ~12 cfm. The chamber was then flushed
with humidified pure air for about one hour just prior to the start of a
run to achieve the desired initial RH of ~50%. The temperature of the
chamber prior to turning on the lamps was adjusted to the operating
temperature anticipated during the irradiation by means of infrared lamps.
During all flushing procedures, the two sonic pumps were in operation to
provide maximum release of materials from the chamber walls.

The matrix air used during the flushing procedure and for the final
£fill for the experiment geherally contained less than a total of 60 ppbC
of all hydrocarbons except methane, which was typically at a concentration
between 550-850 ppb.35 After completion of filling, analysis of the matrix
air prior to injections showed somewhat higher hydrocarbon values due to
off-gassing from the chamber walls, but generally these values were less
than 200 ppbC nonmethane hydrocarbon.

Following flushing, starting materials were injected by using 100-ml
precision bore syringes, and rapid mixing was obtained by brief (~5
minutes) use of the sonic pumps. The surrogate hydrocarbons were injected
as samples from previously prepared mixtures. The liquid hydrocarbons
were contained in a mitrogen-filled 20-% Pyrex bottle, and the gaseous
hydrocarbons were contained in an LPO bottle pressurized with nitrogen.

During the run, the sample temperature was controlled at 32 * 2°C by

means of a variable air flow past the chamber walls.

12
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Light intensity (k,) was periodically determined, using the method

of Holmes et al.,36 whiih employs the initial rate of NO2 photolysis in

N2 as a measure of absolute photon flux in the glass chamber in the actinic
region (300-450 nm). However, some 02 (of order tens of ppm or higher)
will be present in the chamber which cannot be evacuated, but instead must
be flushed repeatedly with N2. Oxygen present in concentrations greater
than approximately 10 ppm will lead to somewhat low values for kl as they
were calcululated in this study relative to the true kl which would be
2.36 Based on the purity of the

nitrogen used (with respect to oxygen content) and a calculated efficiency

observed for the complete absence of O

for repetitive flushing of the chamber, it is estimated that the observed

k., could be as much as 25% low with respect to the true kl’

1

In September 1974, it was found that the k. for the original set of

lamps (Sylvania) had dropped to ~0.20 min_l. Tiese lamps were replaced

with a new set of presumably comparable General Electric (G.E.) lamps which
were found to be actually less effective than even the old Sylvania lamps

(in the actinic region corresponding to NO2 photolysis). Relative light
intensities were measured with a photodiode equipped with a 338-nm inter-
ference filter and a 1.5-V, 3 K bridge as discussed above. Standard
propene—NOX experiments were also used to confirm the unsuitability of the
G.E. lamps. Results of these experiments are summarized in Table 5. Replace-
ment of the G.E. lamps with new lamps manufactured by Sylvania provided a
substantial im?rovement in light intensity. After 100 hours' "burn in"

time, there appeared to be good reproducibility for surrogate runs carried

out at both high (.34 ppm) and low (.06 ppm) NOX levels. After ~150 hours

of use (February 13, 1975), a k1 of 0.32 min—l was observed for the new

set of lamps. On March 21, 1975 after 17 additional runs had been conducted, a kl

, -1
value of 0.25 nmin was measured.

Table 5. Sylvania and G.E. 40-BL Lamp Comparisons Under Normal Operating
Conditions of the Glass Chamber

Light Intensity at 338 nm® dNOz/dtb

Lamps (volts) (ppb/min)
Used Sylvania -0.0556 3.0
New G.E. +0.015 2.4
New Sylvania -0.226 3.8

a . . . . s .
Negative values correspond to higher light intensities.

Standard propene—NOX:experiment; rate for period 0.25 to 1 hour.
14 ‘
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ITI. RESULTS AND DISCUSSION

A. Extension of the HC-NO -0, Data Base
P2 ~

We have previously reportedl results from more than 60 surrogate-
mixture irradiations representing a systematic study of the effect on
production of ozone and other oxidants of across-the-board reductions
in hydrocarbon and carbon monoxide levels at nitrogen oxide concentra-
tions ranging from very low levels (~0.01 ppm) to levels approaching
worst-day ambient concentrations in Los Angeles (~0.4 ppm). In the present
program, a total of 80 chamber runs were conducted, including chamber
characterization experiments (i.e., determinations of ki, ozone decay rates,
standard propene runs, etc.), as well as irradiations of HC-NOX surrogate
mixtures.

We are reporting detailed data resulting from a total of 64 surrogate
runs. These runs were designated to (a) provide data for 6-hour irradia-
tions, which would supplement those obtained in the previous year's program,1
(b) establish a data base for long-term irradiations (i.e., 9 hours or
longer), and (c) determine the effects of added aldehydes and aged smog
on ozone production.

Data sheets listing 03, NO, NOZ’ NOX, CO, PAN, HCHO, RH, and temperature
values for each rum are given in Appendix A. Concentration-time plots
showing 03, NO, NOZ’ and PAN are given in Appendix B. Individual hydrocarbon
analyses are given in Appendix C. A summary of the initial reactant
concentrations, values for the maximum ozone and PAN levels observed, and
the maximum l-hour average ozone levels are given in Table 6 for 6-~hour
irradiations and in Table 7 for the long~term irradiations (including three
runs from last year's program) and added aldehyde experiments. These

results are discussed in detail in the following sections.

15




Table 6. Initial Reactant Concentrations and Values of Reactivity
Parameters for Six-llour Surrogate Irradiations

Initial Concentrations Ozone
MaxImum
Kvegase
NO During |6-Hour
Surrogate NMHC x : HcHo | 6-Hour (6-Hour PAN
| Run No. {(ppbC) (ppm) NOZINOX {ppb) (ppm) (ppm) (ppm)
74-G 2685 .600 .100 102 .079 .064
75-G 1998 .526 .103 46 .087 .071 | .o02
76-G 2718 .534 .101 31 .102 .083 .003
77-G 2202 .348 .166 20 .322 .283 | .008
78-G 2118 .090 .256 31 .372 .367 .011
79-G 1341 .380 .100 16 .069 .057 .002
80-G 2756 430 .198 0 .186 162 | .006
81-G 2467 .190 .153 0 .378 .366 -
83-G 2735 .433 111 67 | .222 .196 .010
84~G 2836 .530 L0946 | 35 .107 .090 .005
85-G 2250 .433 .268 99 .23 |- .205 .011
86-G 2270 .349 .100 104 .234 .204 .012
101-G 2373 .337 .107 65 .159 .135 .014
102-G 2312 .358 .123 28 .139 .117 .011
107-G 2339 .330 .139 73 .214 .188 .017
118-3° 2603 .313 .118 110 .293 .265 .028
119-J 2534 . 340 .121 38 244 .218 .018
124-3 1591 .100 .180 39 .287 .272 .031
125-J 1619 .150 .107 3% | .238 .217 .018
p-130-3° 26416 .340 2124 - 206 | .185 .017
p-137-3° 2330 .526 - 2 .045 .038 -
138-J 2331 .523 .096 60 | .031 .025 .002
p-139-7° 2296 .511 121 8 .062 .050 .004
153-J 2395 .481 121 - .068 .057 .004
154-J 2548 .483 .166 140 .078 .068 .003
157-J 2309 198 131 40 .309 .282 .015

%New lamps imstalled prior to 111-G. Rums 111 through 116 were used to
bring the lamps to a reasonably stable intensity.

bFollowing ozone conditioning of the chamber.

16
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B. Application of SAPRC-ARB Chamber Data to NO Retrofit Program for 1966-70

Light-Duty Motor Vehicles in the SCAR37

An important goal of this SAPRC—ARB investigation has been to define
ranges of initial ambient NOX and nonmethane hydrocarbon (NMHC) concentra-—
tions for which the Federal ambient air quality standard for oxidant would
be met. However, it now appears that interim improvements in air quality, as
well as the ultimate achievement of air quality satisfying the oxidant standard,
will come about largely through a series of control programs--~each of which
produces only relatively small, discrete reductions in HC and/or NOX emissions.
Such a control program was instituted in 1973 in the California South Coast Air
Basin, in which 1966-70 light-duty motor vehicles were to be retrofitted with
a device to control NOX emissions.38 In early 1974, after only partial
implementation of this program, it appeared that repeal of the program
by legislative action might occur. This led to a request from the ARB
chalrman that we apply the data obtained in our ARB-spomsored HC- NO
surrogate irradiation program to a quantitative evaluation of the effect
on maximum ambient ozone levels, in both Los Angeles and downwind regions
of the South Coast Air Basin, of the fully implemented NO retrofit program.

The resulting development of a method to provide an evaluatlon of
incremental reductions in ambient HC and/or NOX levels has been described
in a previous report}' The following four elements are necessary to carry
out such an evaluation: (a) a valid data base relating precursor levels
to production of ozone, (b) data concerning initial (i.e., precontrol
strategy) ambient levels of HC and NOX present in the early morming hours,
{c) an estimate of the emissions reductions to be achieved by the control
program under consideration, and (d) a method for predicting the ambient
HC and NOX levels resulting from such emission reductions. Each of these
elements, and the assumptions involved in their use, will be discussed
below in relation to their specific application to evaluation of the NO

retrofit program.

HC-NO —Ozone Data Base. The data base relatlng ozone formation to

initial NMHC and NO levels, which was largely developed in the previocus
yean} has been supplemented and extended as described in the preceding
section (see Table 6). From these combined sets of data, we have taken

the ozone concentration after 6 hours of irradiation (the maximum

18
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observed during that period), as a function of initial NMHC and NOx concen-—
trations (Figure 11), as the basis for developing the following assessments
of effects on ozone maxima resulting from incremental reductions in pre-
cursor levels. We have assumed that the chamber irradiation results pro-
vide a reliable indicafion of the results to be expected for similar con-
ditions in the atmosphere in the South Coast Air Basin. Some evidence for

the validity of this assumption will be discussed below.

Initial Ambient Concentrations of the NMHC and NOX Precursors. In

order to calculate the magnitude of effects on ambient ozone levels due

to a given reduction in ambient NMHC and NO levels, it is necessary to
establish base condltions, i.e., the levels of NMHC and NO present prior

to implementation of a control program. We chose to deflne initial con-
ditions on the basis of air monitoring data from stations 001 and 083 of

the Los Angeles Air Pollution Control District which are located in downtown
Los Angeles and Pasadena, respectively. Extensive trajectory and air

39-41 have shown that on

parcel transport studies by a number of groups
days of high oxidant, Pasadena is frequently a receptor at about noon
(i.e., approximately 4 hours after the morning traffic peak) for air
parcels originating in the Long Beach-Central Los Angeles area in the 6-~9
AM period. Since the surrogate mixture was designed to reflect the 6-9 AM
ambient NMHC and NOx levels in Los Angeles, the smog manifestations observed
toward the end of a 6~hour irradiation are taken to correspond in this
case to ambient photochemical oxidant concentrations observed in the
Pasadena area (see discussion and validation of this concept below).

Two sets of initial conditions, utilizing air monitoring data for
oxidant (ozone)42 in Pasadena and NOx and NMHC in downtown Los Angeles
(Station 001), have been selected. The first case is based on the highest
oxidant (0.45 ppm hourly average) observed in Pasadena in 1973. This
occurred on July 25, for which date the hourly average NMHC and NOX concen-
trations at 8 AM (PST) at Station 001 were 3.0 ppmC and 0.3 ppm, respectively.
These precursor concentrations yielded the highest hourly average NMHC/NOx ratio
observed at Station 001 during the 6-9 AM period for the 12 days of highest
oxidant observed in Pasadena during 1973.43 The second case is derived from

data for July 3 and 24, August 18, and October 4, 1973-—four days of high

19
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oxidant in Pasadena for which (With the exception of July 25) the highest
43
6-9 AM NMHC was observed at Station 001 in 1973. For these four days,
6-9 AM average NMHC was 2.35 ppmC,and a more typical NMHC/NOx ratio of about

7 (average of 6-9 AM average values) was observed.

Reductions in Emissions and Ambient NMHC and NOx Levels. The data on
reduced emissions from vehicles retrofitted with NOX devices were obtained
by the ARB by measuring the emissions from a large number of vehicles both

with and without the device. A number of surveillance programs were con-

ducted, and, from the observed changes in emissions resulting from installation

of the NOX retrofit devices, the ARB provided projections of the resulting
change in total emissions (from all sources) of NMHC and NOX. The assump-

tion that the percent reduction in emissions would give a corresponding

percent reduction in ambient NMHC and NOX levels was made in these calculations.

Application of Chamber Data to the NOx Retrofit Program. Three different

initial estimates of the emissions reductions effected by the retrofit
devices and the resulting impact on NOX and HC emissions in 1975 for the
South Coast Air Basin were (a) a 7% reduction in:NOX emissions from all
sources with no change in HC emissions, (b) in addition to a 7% NOX reduc-—
tion, a 3% decrease in overall HC emissions based on an approximate 21%
reduction in HC exhaust emissions‘which was observed as a side benefit from
the retrofit devices in some early surveillance tests, and (c) a 3.3%
decrease in NOX emissions and a 3.7% decrease in HC emissions.44’45
Initially, we calculated the effects of various small reductions in
NOX and/or NMHC on ozone formation by %Enear interpolation on the SAPRC
chamber data as presented in Figure 12.” Evaluation of the impact of the
three emissions reduction scenarios cited above, using an initial NMHC/NOx
ratio of 10 and of 7 (as discussed previously), is given in Tables 8 and 9,
respectively} It can be seen that slightly more pessimistic results are
obtained for an initial NMHC/NOX ratio of 7. ‘This result can be predicted
qualitatively from Figure 11 as well, where it can be seen that, for the
two highest HC levels, the greatest ozone levels are produced at HC/NOx
ratios of about 10. Thus a change in NOx in either direction will tend
to lead to a reduction in ozone. However, at‘an.HC/NOX ratio of 7, a

decrease in NOX only will lead to an increase in ozone.

21
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Table 8. Effects on Ozone Maximum from Early Estimates of Emission

Reductions Due to NOX Retrofit Program for HC/NOX = 10

% Reduction

in SCAB Emissions Concentrations
mmc! NO Ratio Max
Case HC NOX (ppuC) NMEC/NO Ozone %
PP (ppm) " x  (ppm). Change
* % ‘
0 0 3.00 0.300 10.0 46 -
(a) 0 7 3.00 0.279 10.8 47 +2
(b) 3 7 2.91 0.279 10.4 .46 0
(c) 3.7 3.3 2.89 0.290 10.0 45 -2

#NMHC = THC - CH4

*
LAAPCD Station 001, 8 AM (PST) hourly average, July 25, 1973

Table 9. Effects on Ozone Maximum from Early Estimates of Emission
Reductions Due to NOx Retrofit Program for HC/NOX =7

7% Reduction

NMHC = (THC - 1.35)/1.55

in SCAB Emissions Concentrations Max
Case He NO NMHC# NO Ratio Ozone %
X (ppmC) (ppﬁ5 NMHC/NO_  (ppm)  Change
* *

0 0 2.35 .336 7.0 .33 -
(a) 0 7 2.35 .312 7.5 341 +3
(b) 3 7 2.28 .312 ‘ 7.3 .34 +3
(c) 3.7 3.3 2.22 .325 : 6.8 .33 0
#

*
LAAPCD Station 001, average of 6-9 AM (PST) averages for July 3 and 24,

August 18, and October 4, 1973.
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‘It is of interest to compare the ozone levels predicted from the
chamber data with those actually observed on the days used to establish
initial conditions. On July 25, 1973, the maximum ozone in Pasadena was
0.48 ppm (instantaneous, uncorrected) at ~12 noon (PST), approximately 4 hours
after the air mass passed the Los Angeles area (see Figure 14 in Section III-C)
containing 3.0 ppmC NMHC and 0.300 ppm NOX. For these same conditions in
a 6-hour chamber irradiation, an instantaneous maximum ozone value of 0.46 ppm
is predicted (Table 8), in very good agreement with the observed maximum
ambient ozone level. In view of the fact that the initial NO/NO2 ratic
was 9 in the chamber experiments, but 0.4 (hourly average) for July 25 at
8 AM (PST), and that it would take 1-1.5 hours for the chamber system
to reach NO/NO2 = 0.4, the use of these 6-hour chamber experiments to
predict ozone levels for areas 4-5 hours downwind of major source areas
appears to be validated by our results. Similarly, for the other 4 days
in 1973 which were used to establish initial conditions of 2.35 ppmC NMHC
and 0.336 ppm NOX (6-9 AM PST averages), ozone maxima (instantaneous) in
Pasadena were 0.44, 0.41, 0.32, and 0.36 ppm. Based on the average initial
conditions for these days, the chamber data predict an average ozone maximum
of 0.33 ppm. The agreement between experimental (i.e., chamber) and
observed (i.e., ambient) absolute values of maximum ozone is such that
the previously stated assumption concerning the application of the chamber

data to atmospheric conditions seems justified.

Calculations with Additional Surveillance Data—-Development of a

Generalized Approach. A significant body of additional surveillance‘data

for light-duty motor vehicles operated by the general public and equipped with
NOX retrofit devices were obtained46 at the time that Governor Brown was
facing the decision of whether or not to sign the State Senate bill (SB-41)
which would repeal the mandatory NOX retrofit program for the South Coast

Air Basin. Because several data sets were being developed and frequent
updating was provided, a more rapid means of calculating the specific

effects of various small reductions in NOX and NMHC emissions was sought.

A plot of the percent change in ozome as a function of the percent reduction
in NOX and NMHC (for a range of reductions up to ~10%) was developed and

is presented graphically in Figure 13. These data can alsc be represented

by the following equation:
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A03(Z) = -1.29(% HC reduction) + 0.96(% NOx reduction)

which is taken to apply to locations such as Pasadena (i.e., 4-6 hours down-
wind from the principal 6-9 AM emission sources). '

In collaboration with John Holmes and Frank Bonamassa47 of the ARB,
similar equations were developed for a number of other conditions,
specifically for (a) far downwind locations in the South Coast Air Basin
(e.g., Upland) by extrapolating our 6-hour chamber data to 10 hours, (b)
incorporation of a reactivity "credit" to allow for the fact that exhaust
hydrocarbons are generally of high reactivity, and (c¢) incorporation of a
diurnal "credit." The latter corrects the overall emissions reductions
estimates (which are based on 24-hour averages of the emission inventory)
to accoﬁnt for the fact that 6-9 AM emissions contribute in a dispropor-—
tionately large way to the formation’of ozone downwind later in the day.

The overall equation for far downwind locations in the South Coast

Air Basin from extrapolation of the chamber data to 10 hours is:
AOB(%) = -1.0 (¥ HC reduction) + 0.8 (% NOX reduction)

Ozone changes calculated from this equation were taken to be the smallest
reductions in ozone (worst case) to be expected at far downwind locations.
Inclusion of the effects of the reactivity and diurnal "credits' noted
above led to best-case estimates of the ozone reductions which could be
expected for both the 6-hour and 10~hour ozone estimates. The final two
columns of Table 10 show the best case and worst case calculated ozone
changes for doﬁnwind locations corresponding to Pasadéna and Upland,
respectively, for thirteen different sets of emissions redﬁction data

furnished by the ARB from various NOX retrofit device test programs.

Conclusions. If only the effect of the NOX retrofit control strategy
is considered and interactions with other concurrent control measures
(e.g., new car emission controls, vapor recovery, etc.) are ignored, the
major conclusions of this study can be summarized as follows:

(1) 1In general, a decrease in emissions of nitrogen oxides that is

accompanied simultaneously by an approximately equivalent
reduction in reactive hydrocarbons should lead to a reduction

in ozone levels at all locations in the South Coast Air Basin (SCAB).
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(2) A significant reduction in NOX emissions alone will tend to slightly
increase ozone levels in the central and western end of the South

Coast Air Basin and tend to decrease ozone levels in the eastern

end of the Basin.

The magnitude of these effects will depend on the specific emissions reductions

involved, as shown by the data in Table 10.
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C. Development of Air Parcel Transport Simulation Experiments Using

Trajectory and Diffusion Models

The goal of this subprogram was to provide a basis for designing
chamber experiments which would realistically simulate air parcel trans-
port, in locations such as the California South Coast Air Basin, with
respect to both injection of fresh oxidant precursors and dilution and
dispersion effects. The first step in this development was an investiga-
tion of characteristic air parcel histories in the South Coast Air Basin,
with special emphasis on an air parcel which followed a trajectory from
southeast Los Angeles to Pasadena between approximately 5 A.M. and 12 noon
on July 25, 1973, the day of highest oxidant observed in 1973 (0.45 ppm
oxidant observed in Pasadena).

In order to carry out this study, three elements are essential;
namely, determination of the trajectories, estimation of the air quality
within the air mass, and modeling of the diffusion to determine the dilution
and fresh pollutant addition rates. Each of these elements is discussed
in the following paragraphs. It should be noted here that the basic tool
for this investigation was the General Research Corp.. (GRC)-DIFKIN computer
model_,4 which was altered and expanded‘as needed to complete the studyﬂ .

The trajectory of an air mass was determined by numerical interpola-
tion on the meteorological data recorded at the various air monitoring
stations within the South Coast Air Basin. The trajectory program was
taken directly from the GRC-DIFKIN model. It operetes by interpolating
on the wind speed and direction reported for the three closest stations to
a given point. The weighting of the variables was done either by a 1/r
or 1/r2 weighting factor. In this manner, the wind direction and speed
was determined at a given point and used to trace the air parcel trajectory
in a forward or backward direction from that point. In this manner, one
can determine the trajectory from a given starting point by specifying the
meteorological data at the various stations, the geographical location of
the starting point, and the time of day. It should be noted ;hat the
meteorological data used was obtained essentially at ground level. It is
known that transport at higher altitudes occurs at greater speeds than at
ground level. This higher altitude transport may be down-mixed with the
ground level air masses, thus resulting in higher dilution rates than

might be predicted. Accounting for this effect is discussed below.
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Having determined the air parcel trajectory, the air quality within
that parcel was estimated, using a similar interpolation scheme. In this
case, the pollutant concentrations reported at the various air monitoring
stations were interpolated by using a similar weighting factor for the
three closest stations. The concentration of the various pollutants
which are reported was then estimated at specific times of day along the
trajectory. In general, this procedure works reasonably well for the
following pollutants: carbon monoxide, sulfur dioxide, nitric oxide,
nitrogen dioxide, and ozone. It does not work well for nonmethane
hydrocarbon (NMHC), since the data for NMHC are reported as total hydro-
carbon and methane to the nearest ppm. To obtain NMHC, one must subtract
these two large numbers to determine the much smaller nommethane hydro-
carbon concentration. As a result, the accuracy of this determination is
generally poor.

To determine the dilution and addition rates for a given air parcel,

a diffusion model is needed to account for the tramsport of pollutants in
vertical and horizontal directions. For the GRC-DIFKIN model, which was
used in this study, the horizontal turbulent diffusion fluxes, both normal
to and along the wind trajectory, are assumed negligible compared to the
advection and vertical diffusion. Essentially, the model allows the input
of turbulent diffusion coefficients at various altitudes as a function of
time of day. 1In addition, a primary pollutant source inventory, as a
function of day and position, is given in the GRC mecdel. This inventory
is essentially an extension of the System Applications, Inc. (8SAI) inven-
tory49 for the L.A. Basin in 1968 and yields primary pollutant fluxes on

a 2-by-2-mile grid system for oxides of ﬁitrogen, reactive hydrocarbons,
and carbon monoxide.

In order to generate a set of diffusion coefficients, which are realistic
for the given day being studied, the carbon monoxide air quality estimate was
used as a verification test. The diffusion coefficients are first estimated
from the temperature gradient data obtained for the particular day of interest.
They are then adjusted to yield calculated (from the diffusion model) ground
level carbon monoxide concentrations, which compare well with those estimated
from the interpolation on the air quality data. Using these time-dependent
diffusion profiles, the concentrations of the other primary pollutants,

namely NOX and hydrocarbon, were then determined for the air mass.
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The addition rates of fresh pollutants are related to the emissions
inventory used for the diffusion model. The dilution rate can also be
determined from the results of this model. In general, the accumulation
of pollutants within a given air mass is determined by integration of the
concentration profile at the beginning and end of the time period under
consideration. If the particular air mass of interest is bounded by the
ground surface plane, then the incoming mass is determined directly from
the source inventory, and the outgoing flux by the difference between
the accumulation and the incoming flux. TIf the lower boundary of the
air mass is not the ground plane, then the incoming or outgoing mass flux
can be determined by using the Fickian diffusion equation and the turbulent
diffusivities assumed in the diffusion model. The term "dilution" indi-
cates that there would be a net reduction in the concentration of primary
pollutants in the air mass. This is often not the case for trajectories
which remain over areas of high primary pollutant fluxes. Thus, the
dilution and/or buildup of pollutants within the air mass is strongly
dependent upon the trajectory and the time of day for a given trajectory.

The above analysis for determining the trajectory and air quality for
an air mass has been applied to a given trajectory for July 25, 1973. The
particular trajectory of interest was started at Pasadena at the time of
the peak oxidant level recorded for the day and traced backward to 3:00
PDT for that morning. The actual trajectory is shown in Figure 14, and the
ambient air quality profile for NO, NOZ’ and oxidant is shown in Figure 15,
The hydrocarbon results are also shown in Figure 16, but must be viewed
with caution. It is interesting to note that the concentration profiles,
as a function of time, are very similar to those produced in a typical
smog chamber experiment, and the differences can readily be interpreted in
terms of fresh pollutant addition. Note that the NO and hydrocarbons rise
in the early morning due to the increased traffic, and, as the sun comes
up in the early morning, the NQ2 begins to increase. The traffic falls
off at about 9:00-10:00 in the morning, and the NO decreases due to the
conversion to NOZ' The NO2 continues to rise to a peak and then falls off
rapidly. During the falloff of NOZ’ the ozone rises to its maximum.
Unfortunately, for this particular trajectory, the air packet passed over

a barrier which was inputted to account for the San Gabriel Mountain range
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behind Pasadena just after the peak. Thﬁs,'one might assume that the air
mass stagnated at that point. Continued analysis is not possible when
this occurs.

Figure 17 shows the ground level concentrations of CO as a function
of time of day. It is clear that this concentration follows the diurnal
variation of traffic, rising to a peak at approximately 9:00 in the morﬁing,
falling off just before noontime, and then continuing to rise during the
later afternoon. Also shown in Figure 17 is the simulated ground CO concen-
tration predicted by the diffusion model. The earlier falloff of the
modeled CO concentration apparently results from‘the GRC inventory diurnal
traffic variation factor being somewhat in error. At the current time,
the determination of the dilution rate from the model is not completed
so that no further analysis of the CO results can be given. It should be
noted that, in other trajectories done to date for which the trajectory
could be continued beyond the time of peak ozone, the rapid decline in
ozone after the peak is accompanied by a rapid decrease in CO. This
might suggest that the decrease in the ozone level beyond the peak is
caused by an intrusion of cleaner air via upper altitude transport from
the ocean. Further investigation of this point will be made as more
trajectories are analyzed.

In the preceding paragraphs, a methodology has been described to
analyze the transport of pollutant air masses across an air basin. For a
given trajectory, which is determined by interpolation of ground level
meteorological data, the ambient air quality is estimated by a similar
interpolation procedure using the air quality data. Based on these
results, and using the CO concentration history, a diffusion model is
generated to allow for the transport of the pollutant in the vertical
direction. Using the emissions inventory estimated by GRC and the diffusion
model, both dilution and fresh pollutant injection rates can be determined
and utilized as a basis for designing realistic chamber experiments

simulating full-day irradiation and air parcel transport effects.
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D. Generation and Application of a 9-Hour HC-NOX—Ozone Data Base and

Effects of Aged Smog on the Reduction of Photochemical Oxidants:
Added Aldehydes

1. Generation of 9-Hour HC—NOX—Ozone Data Base

Introduction. Achieving reductions in oxidant formation in regions

dovnwind of major emission sources requires data concerning the oxidant-
precursor relationships which occur (a) during long-term (i.e., ~6-10 hrs)
irradiation and transport periods, and (b) during multiple-day irradiations
of polluted air masses. At the time of the present study, few (if any) smog
chamber data relevant to this problem were available. Specifically, most,
although not all, published data from Previous chamber studies are for
irradiation periods of 6 hours, or, in many cases, for 2-4 hours. Accordingly,
we have attempted to provide data of utility with regard to assessing the
dependence of oxidant formation on initial HC and NO concentrations for
irradiation periods longer than 6 hours.

Two approaches have been taken. First, we have experimentally
generated new 03—NOX—HC data for 9-hour or longer irradiations for NMHC
and NOx concentrations corresponding to present ambient levels in the
South Coast Air Basin (Section ITI-A). Second, we have developed method-
ologies for extrapolating the previously obtained 6-hour SAPRC-ARB data base
to periods as long as 10 hours. The purpose of this section is to present
the new data and methodologies with a view toward understanding the
influences of irradiation period on the interdependencies of absolute
NMHC and NOX concentrations, NMHC/NOX ratios, and oxidant production. Such
an understanding relates directly to a key question posed at the outset
of this report--namely, must different views be taken of the problem of
controlling oxidant formation in upwind and downwind regions, and, if S0,

are the different approaches reconcilable?

Extrapolation of the 6-Hour HC—NOX—Ozone Data Base. Because only a

limited number of long-term irradiations have been carried out thus far,
we have used the results from these experiments to evaluate methods for
extrapolating the data from previous 6-hour runs to longer times. The
simplest approach we have taken to estimating 9-hour ozone concentrations

was based on a linear extrapolation of the observed 6-hour ozone to 9 hours,
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using the observed 5- to 6-hour rate of ozone formation. An estimate of
the reliability of this simple ektrapolation method may be drawn from data
presented in Table 11, which provides a comparison (for those 9-hour, or
1onger, irradiations conducted to date) of the 9-hour ozone concentration
calculated by linear extrapolation (column 5) with that actually observed
(column 4). As can be seen from these data, as well as column 6--the
ratio of the observed and extrapolated values—-for NOX > 0.3 ppm, the
linear extrapolation works very well (i.e., to within a few percent).

For lower NOX concentrations, the calculated result overestimates the
observed 9-hour ozone by amounts varying from 5 to 15%.

A plot of the ratio of the observed to calculated 9-hour ozone
concentrations as a function of initial NOX concentration (Figure 18)
suggests that an empirically derived correction factor can be applied
to the 9-hour extrapolated ozone values to provide more accurate estimates
of the 9-hour ozone levels which would have been achieved in experiments
terminated at 6 hours. A limitation of such an approach is that a given
(NOX—dependent) correction factor may not apply at all NMHC concentratiomns.
The majority of the data used in Figure 18 were obtained for initial NMHC
concentrations in the range of 1500-2500 ppbC. Although the few points
at higher and lower NMHC levels are within the observed scatter, the
application of this correction function to the lowest NMHC concentrations
investigated during the 6-hour irradiation program should be dome with
caution.

A second, and considerably more sophisticated approach to extrapo-—

lating the 6-hour HC—NOX—O data base to longer times has recently been

3
developed by G. J. Doyle of our staff. 1In this approcach, the experimental
ozone profiles for surrogate runs 10-C to 158-J were fitted to an expansion
in orthonormal functions whose coefficients were related to initial NOX

and NMHC concentrations. The resulting regression expressions provide a
basis (within specified limitations) for deriving ozone concentrations for
any initial NOX and NMHC concentrations bounded by the experimental data
and for extrapolated irradiation times as long as 10 hours. A description
of these calculations and the detailed results obtained are presented in

Appendix D.
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Table 11. Comparison of Experimentally Observed 9-Hour Ozone Values with Those

Calculated by Extrapolation of 5- to 6-Hour Values and by Regression.

Initial Concentration 9-Hour 04 ‘
9-Hour O

Surr. NO Calculated Calc by
Run NMHC X Observed by Extrap. Obs/Calc Regres. Obs/Calc
No. (ppbC) (ppm) (ppm) (ppm) (Extrap.) . (ppm) (Regres)
150-J 2450 .523 .166 .162 1.025 .168 .988
158-J 3120 .430 .295 .297 .993 .338 .873
149-3 2275 .313 .389 .390 .997 401 .970
117-G 1975 .298 .346 . 347 .997 .374 .925
136-J 2410 271 .394 411 .959 <434 .908
151-J3 2480 .245 463 .523 .885 - -
156-J 2230 .206 419 462 .907 454 .923
132-J 1530 .161 .368 422 .872 .377 .976‘
122-3 1640 .098 .337 .384 .878 .355 .949
133-J 1580 .097 .326 .355 .918 .352 .926
62-G 746 .096 .281 .325 .865 .269 1.045
48-G 350 .077 .214 . 245 .873 .211 1.014
121—5 2430 .056 .290 .306 .948 - -
134~3 2490 .038 .198 .206 .961 .307 .645
135-J 1480 .037 .218 .230 .948 .234 .932
55-G 1360 .016 .136 144 944 .133 1.023

L
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A comparison of the results of the extrapolation to 9 hours, using
the regression expressions in Appendix D, to the experimental 9-hour ozone
values is shown in columns 4 and 7 of Table 11, and the ratios of calculated
and experimental in column 8. With the exception of run 134-J, good agree-
ment was obtained in all cases. Since, however, only a limited number of
9-hour experiments have been performed, and these are limited primarily
to the range of initial NMHC concentrations from 1500-2000 ppbC, a further
test of the regression analysis method was performed. Specifically, using
the initial experimental NOX and NMHC concentrations from approximately 60
surrogate experiments, the 6-hour ozone concentration was predicted using
the regression expressions as discussed. These calculated values are
shown as a transparent overlay in Figure 19 and can thus be readily
compared to the experimentally observed 6-hour ozone values plotted for
the same experiments in Figure 20.

On the basis of the results obtained for the regression expression
extrapolation, it appears that this method is of sufficient accuracy and
generality that it can be used with some degree of confidence to extrapolate
the body of the 6-hour experimental ozone data obtained in this program
to time periods between 6 and 10 hours. As a specific case, we have calcu-
lated the 9-hour ozone concentrations for some 60 sets of initial NMHC and
NOX concentrations (corresponding to 60 experimental rumns), and these

values are shown in Figure 21.

Maximum Ozone Levels as a Function of Transport Time. The need for

an HC—NOX—O3 data base valid for irradiation periods corresponding to air
parcel transport to the downwind regions of an air basin has already been
demonstrated in Section III-B above, where such data were required for an
assessment of the impact of the NOx retrofit program for 1966-70 light-duty
motor vehicles on areas in the eastern portion of the South Coast Air Basin.
In this and the following sections, we consider further implications of the
effect of irradiation period.

The problem of determining the reductions in NMHC and NOX levels
necessary to achieve maximum reduction in ozone levels is made considerably
more complex when one takes into account the irradiation time experienced
by the pollutant mass which is to be controlled. This is illustrated in

Figure 22, where maximum ozone concentrations after 1, 4, 6, or 9 hours of
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irradiation are plotted as a function of initial NO_ for initial NMHC 2.2
ppmC. The 9-hour data include both the current experimental values as well
as those calculated from previous 6-hour runs by the linear extrapolation
method described above. It is apparent that at least three factors must

be considered here: (a) the absolute ambient concentrations of primary
pollutant NMHC and oxides of nitrogen, (b) their relative amounts, i.e.,
the NMHC/NOX ratio, and (c) irradiation time. For example, inspection of
Figure 12 indicates that, for aﬁy given irradiation period, the relationship
of ozone formation to precursor levels may be divided into two regiohs:

(2) at low NOX levels and high NMHC/NOX ratios (> 20), increasing NMHC

does not appear to affect the rate of ozone formation significantly, -

and (b)_at high NOX levels and low NMHC/NOX ratios (< 3), increasing NOX
does not appear to increase the rate of ozome production appreciably

(see 0.7 ppm HC isopleth in Figure 20). A third region is apparent from
Figure 22; namely, at intermediate NOX and NMHC levels (NMHC/NOX ratios

~5 to ~15), the greatest ozone levels occur atszMHC/NOX ratio determined

largely by the irradiation period.

Hydrocarbon Composition as a Function of Irradiation Time. A further

aspect in considering effects resulting from longer irradiation periods
concerns the changing hydrocarbon composition of an air mass as the more
reactive hydrocarbons are preferentially depleted with respect to less
reactive compounds. Figure 23 illustrates this effect for selected
components of the surrogate mixture. After some 7 or 8 hours of irradiation,
a representative alkene (propene) and aromatic (m-xylene) have been almost
entirely consumed, while the less reactive n-butane and toluene remain in
substantial concentrations. Thus, in the later stages of this 12~hour
irradiation, the alkane and aromatic are contributing to the continued
ozone production. The implications are obvious for air parcel transport
in the ambient atmosphere during the season around the summer solstice,

when 11-14 hours of daylight are experienced.
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2. Added Aldehyde Experiments

Aldehydes occur in the.atmosphere both as primary emissions and
as the result of atmospheric photochemistry. The scientific literature
prior to 1970 concerning the modes of formation, levels of cccurrence in the
atmosphere, effects, and methods of measurement of aldehydes has been reviewed.51’5:
Formaldehyde (HCHO) is particularly important because its absorption
spectrum extends well into the actinic ultraviolet region. The photo-
decomposition of HCHO can proceed by both a radical path and a molecular

path53 as shown

—  H + CHO
HCHO + hv ()<3700 A)—

> H2 + CO

The relative and absolute importance of these two paths is still
not definitively decided, since there have been differing reports concerning
the quantum yields for these two reactions in the actinic ultraviolet

b

region.5 Nevertheless, it seems clear that HCHO photolysis imn air

will lead to the formation of hydroperoxy radicals (HOZ) via

+ +
H+ O, +M>HO, +M

and

-+
CHO + 02 > HO2 Co

Aliphatic aldehydes will also photodissociate53 to give formyl radicals

(CHO) and hence are alsc a source of HO Thus, aldehyde photolysis drives

5"
the important HOZ—OH chain mechanism by the above reactions and

+ NO + OH +
HO, + NO > OH + NO,

leading to the oxidation of NO and hydrocarbons via OH attack. Demerjian,
Kerr and Calvert have recently computer modeled56 the importance of
aldehyde photolysis in photochemical smog using data from experimental
studies by Bufalini and Brubaker57 (photooxidation of HCHO) and Dimitriades
and Wesson58 (reactivities of exhaust aldehydes).

As stated by Demerjian, Kerr and Calvert, the number of available

rate studies for added aldehydes at low concentrations in irradiations of
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HC-—NOX systems under simulated atmospheric conditions is very limited. 1In
fact, only Dimitriades and Wesson's data were suitable for their purposes.

In the present study, irradiations of the standard surrogate mixture
(2450 ppbC nonmethane HC, 0.33 ppm NOX, 7.0 ppm CO, and 2.8 ppm CH4) were
carried out at several initial formaldehyde concentrations. The quanti-
tative effects of increasing HCHO on both initial rates of reaction and
on 6-hour ozone levels are summarized in Table 12. Clearly, the reactivity
of the mixture is enhanced with higher initial HCHO levels as seen by the
increased initial rates of NO oxidation and ozone formation, and substantially
higher ozone levels at 6 hours. The 6-hour ozone concentration as a function
of HCHO is shown graphically in Figure 24. An experiment carried out with
acetaldehyde (CH3CHO) instead of HCHO gave comparable results.

The effect of added HCHO on ozone levels throughout a series of 9-hour
irradiations of the HC—NOX surrogate mixture is shown in Figure 25, The
enhancement in ozone production is striking. The detailed initial conditions
and reactivity parameter data for each of the added aldehyde experiments
(Runs 140-148) are given in Appendices A and C. Such data should prove
useful in further computer model validation studies of the type reported
by Demerjian, Kerr, and Calvert. The experimental results
obtained here and in previous studies, such as that by Dimitriades and
Wesson, leave little doubt that the occurrence of aldehydes in the atmos-
phere, whether from emission sources or as products of chemistry‘in the

polluted atmosphere, will lead to enhanced photochemical smog manifestations.
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E. Investigation of the 2% Neutral Buffered Potassion Iodide Method

for Ozone

The accurate measurement of ozone concentrations is critical to the
development of any new major HC--NO;{—O3 data base, such as the one being
generated in this research program. This is true, not only for the inter-
pretation of the oxidant-precursor relationships which may be developed in
such a program, but also with respect to the application of such data to
assessments of ongoing or proposed control strategies. In June 1974, at
a time when a major body of data relating ozone production to initial HC
and NOX levels had already been generated in this chamber program, it was
disclosed by the California Air Resources Board (ARB) and the Los Angeles
Air Pollution Control District (LAAPCD) that a significant discrepancy
(approximately 307%) existed between ozome concentrations measured by their
respective calibration procedures. Inasmuch as the 2% neutral buffered
potassium iodide (NBKI) method for determination of ozone (i.e., the ARB
method) had been employed in our laboratories in the calibration of ozone
monitors used in our HC—NOX—O3 research program, we felt that it was
critical to understand the implications of this discrepancy for our data.

Having the appropriate resources, personnel, and experience, we under-
took an investigation of the stoichiometry of the 2% NBKI method at ambient
concentrations of ozone using long-path infrared (LPIR) spectroscopy. This
investigation consisted of\three subprograms. First, a determination of
the absolute absorptivity of the 9.6-micron band of ozone as a function of
both spectral resolution and abundance, since such data have not been
previously reported and, therefore, were not-available to us. Second, we
have investigated the correlation between the 2% NBKI method and the
infrared absorption of ozone over a concentration range from 0.1-1.2 ppm
by means of an in situ study in the SAPRC 5800-liter evacuable environmental
chamber, which had been constructed with ARB support. Finally, SAPRC staff
members have ahalyzed the impiications for the historical oxidant data base
Vin the South Coast Air Basin of placing the data obtained by both the
LAAPCD and the ARB on a common calibration basis.

In the remainder of this section, we will present the results of the
experimental studies carried out in our investigation of the 2% NBKI method.
The implications of correcting the South Coast Air Basin oxidant data base,

on the basis of our experimental results and those of the ARB Ad Hoc Oxidant
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Committee, are presented in Section III-F. Portions of the work described
below were conducted as adjuncts to research being carried out for both
the California Air Resources Board and the National Science Foundation--
Research Applied to National Needs (NSF-RANN). Subsequently, reports

of all phases of this research have been accepted for publication in
refereed journmals, but have not yet appeared in the literature. Thus,

the following results and discussions are excerpted from the refereed

reports of our work.

1. Determination of the Infrared Absorptivity of the 9.6 Micron

59
Ozone Band as a Function of Spectral Resolution and Abundance

Introduction. The absorptivity of ozone in the ultraviolet has

been accurately determined by a number of workers.60_63 However, in the

infrared, we have found that the published data refer to the integrated

64,65 or statistical band model parameters.66—68 The only

absorption,
published absorptivity, that of Hanst, Stephens, Scott, and Doerr [HSSD],69
is applicable only to a limited range of conditions. We have thus found it
necessary to determine the absorptivity of the ozone Vg R-branch maximum as
a function of spectral resolution and abundance. The data presented here
will be useful and accurate for a wide range of commonly encountered

experimental parameters.

Experimental. Known volumes of ozone were prepared in the

apparatus diagrammed in Figure 26. The design was similar to those given
by Birdsall et al.70 and HSSD.69 The ozonizer (205-ml internal volume)

was thoroughly flushed with oxygen (Liquid Carbonic, industrial grade) for
several minutes before the stopcocks were closed, trapping a known volume

of the gas. The silicone o0il manometer was checked until no pressure

change was observed for a period of several minutes. Then 17,000 volts
(a.c.) were applied to the ozonizer for 90 seconds after the constant
temperature bath was unplugged (to avoid grounding the high voltage through
the bath). After turning off the high voltage, the amount of ozone produced

by the reaction

3 O2 - 2 03 (1)

was determined by measuring either the pressure or the volume decrease of

the gas in the ozonizer.
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The pressure decrease was measured without a change in volume by
withdrawing a glass rod from one of the legs of the silicone oil manometer
so that the center column of oil remained at a constant level. The pressure
difference was read between the two legs without the glass rod. Typically,
the manometer deflection was about 13 cm of o0il with an uncertainty of, at
most, *0.03 cm on each leg.

In the alternate method, the volume decrease was measured without a
change in pressure by adjusting the 5-ml gas syringe shown in Figure 26,
such that the manometer was kept at zero pressure difference. The typical
volume decrease was gbout 2.6 ml, read to an uncertainty of about *0.05 ml.
Therefore, we consider the pressure-change measurement to be the most
accurate and thus have used the volume-change method only as a confirmatory
check on the results. In all cases, thermal equilibrium in the sample was
established within 30 to 40 minutes after ozonization.

The ozone-oxygen mixture was introduced into the SAPRC 5800-liter

evacuable environmental chamber24

by flushing the ozonizer with oxygen at

a flow of 1 & m:i_n--l for 5 minutes. The mixing of the ozone with the dry
chamber air was monitored at each end of the chamber by commercial UV

ozone analyzers (Dasibi). Approximately one hour was required for complete
mixing of the ozone. Since, during this period, the ozone was continually
being destroyed at a measurable rate by contact with the chamber walls, the
- decay of each sample was also monitored by these ozone analyzers. From
these data, a decay constant (half-life) was determined for each sample
over a period of several hours, both during and after recording infrared
spectra. Half-lives between 15 and 22 hours were observed; the slower
decays occurred 1in the later experiments due to conditioning of the chamber
walls. The ozone concentration in the chamber at the time of the recording
of each spectrum was determined by applying the first-order decay law to

the amount of ozone initially measured in the ozonizer at the time of the
sample introduction. Typically, spectra were taken during the interval
between 1 and 2 hours after the ozone was flushed into the chamber.

Infrared spectra of the 9.48-micron absorption maximum were obtained by

using a 1.33-meter baselength White cell incorporated into the environ-
mental chamber. The spectrometer consisted of a Nernst glower source, a

one-meter scanning monochromator (Interactive Technology, Inc. CT103)
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employing a 75 gr/mm grating blazed at 8.0 microns, and a mercury-cadmium-
telluride detector (Santa Barbara Research Center, 2 mm X 0.5 mm, D* =

7.4 X 109) operated at liquid nitrogen temperature [the spectrometer is
described more fully below].

All spectra of the ozonizer samples admitted to the chamber were
taken at a path of 69.17 meters with the monochromator entrance and exit
slits set at 0.75 and 1.75 mm, respectively. The spectral region from
8.80 and 9.70 microns was scanned at 0.2 microns min'-l with a time constant
of 1.0 second and a 6 dB/octave roll-off. These conditions give about 3.5
time constants per resolution element, which are quite sufficient for goed
photometric accuracy. A sample spectrum and background are given in
Figure 27. All spectra were normalized on the chart recorder at the
spectrally clear wavelength of 8.822 microns, thus assuring the applicability
of the background (IO) to all of the ozone spectra (I) without ordinate
correction. The signal-to-noise ratio for all spectra was approximately
1000. The completely detailed procedure used for measuring and reducing
the infrared data is given below (Section III-F-2).

The effect of spectral resolution on the ozone absorbance at 9.48
microns was determined by an extensive series of measurements at torr
pressures of ozone in dry air in a 6-cm path-length cell. A Perkin-Elmer
Model 621 spectrophotometer was used to obtain data with a slit width
ranging from 200 to 2500 microns [spéctral slit from 0.9 to 9.9 cmfl]71
and fractional absorptions from 0.09 to 0.48. The decay of the ozone in
the cell was monitored by repeated measurements at a given set of experi-
mental conditions throughout the experiment.

Since the study of resolution vs. absorbance was performed on an
instrument that could only be set with equal slits (i.e., triangular slit
function), we felt it necessary to verify the theoretical cdntention that;

for a given spectral slit (i.e., entrance slit X exit slit = constant),

the measured absorption is independent of slit shape. For entrance slits
ranging from 0.750 to 2.128 mm and exit slits from 0.750 to 1.285 mm, the
standard deviation of the absorbance for a given sample was only 1.2% at
0.48 microns. Therefore, the extrapolation of the data from triangular
to trapezoidal slit function is certainly valid for the conditions of this

study.
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The validity of the Beer-Lambert absorption law to the R-branch maxi-
mum was tested by using a "high" (4.7 ppm) concentration of ozone in the
chamber, and recording spectra as a function of optical path-length.

Care was taken to include the small range of absorbances measured for the
ozonizer samples.

Results and Discussion. The absorptivities determined from the

spectra of the ozonizer samples are listed in Table 13. The absorptivities

are given in both ppm"1 m“l RTP. (735 torr, 25°C) and cm—1 STP units. The

mean and standard deviation for all of the data are (4.23 * 0.04) X 10_4

ppm_l m_1 RTP and 4.61 * 0.04 cm-1 STP. Since this value is approximately
13% greater than that of HSSD (3.74 X 10“4 ppm~1 m_l), we endeavored to
determine the experimental parameters that would cause such a disagreement.

It is well known that the measured absorbance of a given spectral
feature at specified conditions at a single frequency is dependent‘on the
spectral resolution.72 However, quantitative determinations of this effect
have been limited mainly to single lines.73 The magnitude of this effect
over several lines is related to the density and distribution of the un-
resolved fine structure and to the portion of the gross spectral feature
69 of HssD

to the present work, we can ignore the effect of the fine structure, since

encompassed in a resolution element. In comparing the result

the absorbing species is the same. Since HSSD used a prism spectrometer
to obtain their data and we have used a grating monochromatof, there is
good reason to believe the respective spectral resolutions were quite
different, hence different fractions of the R-branch were included. In
searching for a way to estimate spectral resolution, we discovered a
linear relationship between the ratio of the absorbance minimum between

the R and Q branches of the 9.6-micron ozone band (D ) to the absor-

valley
bance of the R-branch maximum (D ). This ratio is designated R ‘and
peak v/p

is defined as

valley _ Dvalley 2)

peak Dpeak

lOglO(IO/I)
Rv/p h 1og10(IO/I)

Figure 28 shows a plot of Rv/p vs, spectral slit (Av). The values for the
spectral slit were calculated from the mechanical slit widths.71 A least

squares fit of the data in Figure 28 gives
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Table 13. Absorptivity of v R-Branch Maximum for RV/P = 0.086%

Absorptivity
04 (ppm v/v)P Time (hr)© ppm—l =t x 10 RTP cm T sTR
0.863 1.083 4.22 4.61
1.500 4.35 4.74
1.750 4.30 4.69
2.083 4.35 4.75
0.916 1.333 4.16 4.54
1.517 4.17 _ 4.56
1.683 4.12 4.50
1.917 4.06 4,43
0.889 1.300 4.20 4.58
1.433 4.23 4,62
1.617 4,28 4.67
1.833 4.27 4.66
0.907% 1.367 4,21 4.59
1.667 4,22 4.61
1.883 4,26 4.65
Mean® = 4.23 + 0.04 4.61 + 0.04

All spectra recorded at 69.17 meters in 735 torr of dry (RH <4%) air at
25°C.

At t = 0.

After introduztion of ozone into chamber.

Based on measurement of volume change in ozonizer by use of the gas syringe
{see text).

Uncertainty is the standard deviation of the mean. Standard deviation of
an individual measuremeant is =0.13.
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-1,
Av(em 7)Y = 22.3 R.v/P - 0.58 (3)

As can be seen from the figure, this relation is independent of absorption
intensity up to 0.48 fractional absorption. We do not expect equation (3) to
hold outside the indicated ranges of Rv/p and Av, since better resolutions
(Rv/p X 0.07) bring out the fine structure of the bank making Rv/p
undefined, and lower resolution (R.V/p > 0.5) destroys the P-, Q-, R-shape
of the band.

The advantage of using Rv/p as a measure of resolution, rather than
Av, which is tenuous and difficult to determine, is obvious. One need
only measure a given spectrum to determine Rv/p’ whereas an estimate of
Av requires assumptions (sometimes unwarranted) about the performance of
a given‘instrument and is therefore, at best, approximate.

The results of the series of infrared measurements at torr pressures
of ozone are given in Figure 29. All of the data were corrected for decay
of the sample during the measurement period. The absorptivity scale was

determined by normalization of the data to HSSD's value of 3.74 X 10_4

ppm_1 mvl for Rv/p = 0.334, as measured from their published spectrum.69
The excellent agreement of the absolute absorptivity determined from this
work [at vap = (0.086, see Section III-F-2] with the value determined from
the curve in Figure 29 demonstrates the consistency of the two determina-
tions. The portion of the curve at low values of Rv/p rises steeply due to

the fact that the rotational structure of the band is resolved at Av < 0.8 cm_l.

2. Determination of the Stoichiometry of the 2% NBKI Method by
26

LPIR Spectroscopy

Introduction. To our knowledge, physical measurement methods such as

UV or IR spectroscopy had not been applied to investigations of the 2%
unbuffered KI (LAAPCD) or 27 buffered KI (ARB) methods prior to the dis-
covery of the discrepancy between these methods. In contrast, the 1%

neutral buffered KI method specified74 by the EPA as the calibration pro-
cedure for instruments measuring oxidant or ozone had been extensively
investigated. These investigations followed a report by Boyd and co-workers/?
that at high (>100 ppm O3 in 02) concentrations they obtained (from UV

photometric measurements) a ratio of 1.5 moles of iodine released per mole of
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ozone absorbed in 17 neutral buffered reagent, thus calling into question
the 1:1 stoichiometyy previously assumed for this method. However, in sub-
sequent investigations by Kopczynski and Bufalini76 (using infrared absorp-
tion spectroscopy), by Hodgeson et al.’’ (using gas phase titration of
‘ozone with nitric oxide in air), and by Beh1/8® (using a Kruger—-type ozone
photometer), all reported a 1:1 stoichiometry for the 1% neutral buffered
method within their experimental uncertainties.

In view of the ramifications of the reported discrepancy between the
buffered and unbufferé& 2% KI methods, as well as our use of the 27 neutral
buffered method in calibrating the various ozone analyzers employed in our
laboratories and air monitoring sites, we began an investigation of the
stoichiometry of the 2% neutral buffered KI method at ambient concentra-
tions using long-path infrared (LPIR) spectroscopy. Although our infrared
study of the ARB reference method was similar in principle to that of
Kopczynski and Bufalini76 (for the 1% NBKI method), it differed signifi-
cantly in two important respects. First, the majority of our data were
obtained for ozcne concentrations below 1 ppm (i.e., at ambient levels),
whereas their lowest determination was for 2 ppm of ozone. Secondly,
the absorptivity we employved was determined for absolute ozone samples
under the precise spectroscopic conditions used in our KI study, whereas
Kopczynski and Bufalini employed an absorptivity determined (by Hanst,
et al.69) for spectroscopic conditions, which could have differed from
those used in their KI study. We report here the results of our investi-
gation and our conclusions concerning the validity of the 2% neutral buffered

KI method for the measurement of ozone in air monitoring applicationms.

Infrared Measurements. For sensitivity in the fractional parts per

million (ppm) range an in-situ multiple reflection cell (based on the

79 and of Horn and Pimentelso) was employed in a 5800-l1liter

design of White
evacuable environmental chamber, which has been described in detail else-
whe_re.23 The gold-coated, multiple-reflection optics were coupled to a
spectrometer consisting of a Nernst glower source, a one-meter scanning
monochromator (Interactive Technology, Inc., Model CT103) employing a 75-
line/mm grating blazed at 0.8 }i, and a Santa Barbara Research Center

‘ +
mercury-cadmium-telluride detector (2 mm X 0.5 mm, D* = 7.4 X 10 9)
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operated at 77 K. The infrared beam was chopped at 1100 Hz, and the pre-

amplifier (Princeton Applied Research Model 118) output was carried to a

PAR Model 126 lock-in amplifier operating at a 3 KHz bandpass. Figure 30
shows a schematic of the environmental chamber with its in-situ long-path
cell and the infrared spectrometer.

All spectra were obtained at a path length of 69.2 meters and a
spectral slit width of approximately 1.3 cm~1. In this work, spectral slit
width was defined as follows: For spectra obtained with a Perkin-Elmer
Model 621 spectrophotometer (see below), spectral slit width was calculated
from the mechanical slit width using data provided by Perkin—Elmer,81
while for spectra obtained with the Interactive Technology monochromator,
spectral slit width was calculated by comparison to the Perkin-Elmer 621
spectra, using the ratio of "valley" to "peak" absorbances as discussed above.

The spectral region from 8.80 to 10.40 microns was scanned in 8.0
minutes, using time constants of either 1.0 or 0.3 seconds. Thﬂs, the scan
rate was equivalent to 5 or 15 time constants per resolution element, more
than sufficient in either case for good photometric accuracy.“ The spectral
region scanned included wavelengths about 0.3 microns to both the long and
short wavelength sides of the 9.6-micron ozone band. A sample spectrum |
recorded for an ozone concentration of 6 ppm is shown in Figure 31. The
well-resolved 9.48-micron R-branch was used to derive quantitative data.

Background (IO) spectra were taken both before the introduction of
ozone ‘into the chamber and after a complete flushing at the end of the
runs. No changes occurred in these spectra over the course of the run.

All spectra were normalized at the spectrally clear wavelength of 8.822
microns, thus éssuring the applicability of the I0 spectra to all of the
ozone spectra without ordinate correction in either sample or background
spectra.

Ordinate scale expansions of X5 and X10 were used when measuring
absorptions less than, or equal to, about 5%. The results from several
scale—-expanded spectra were compared with nonexpanded spectra taken as
soon as possible before and after the scale expansion. The ozone concen-
trations deduced from these replicate measurements at concentrations
between 2 and 0.6 ppm differed by 1 to 5%, depending on the concentration.

We attribute much of this small difference to the inaBility to measure
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Figure 31. Ozone Absorption Band Centered at 9.6 Microns
: -~ Showing R-Branch at 9,48 Microns Used to
Determine Ozone Concentrations.
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the nonexpanded spectra of these weak absorptions to better than about 2
or 3% in ozone concentrations.

The photometric accuracy of the scale expansion was checked before
and after each expanded spectrum by recording at least two transmission
values in both the expanded transmission region and the normal scale. In
general, the expanded transmissioﬁ‘scale was accurate to 0.05%, with a
correctable IO offset of no more than 0.2%. (IOfI) was not sensitive to
this correction and was known to at least *0.1%.

Matching‘the-backgIOund to the ozone spectra on the wavelength axis
was accomplished by using'S weak, isolated water absorption lines in the
region 8.8 to 9.4 microns. The transmission scale was matched as explained
above by single wavelength normalization before taking spectra. This
resulted in excellent intensity match between the background and ozome
spectra for all spectrally clear regions on both sides of the ozomne
absorption.

The 9.48-micron peak in the ozone band was reproducibly found by
counting interference fringes present due to the 7.47-micron blocking
filter used with the monochromator. As shown in Figure 32, obtained for
an ozone concentration of 0.36 ppm, these fringes are just resolved in
both background and ozone spectra, thus insuring accurate wavelength
determination for the intensity (I and IO) measurements. The large slope
observed in Figure 32 results from multiplication of the changing HgCdTe
detector response in this wavelength region by the X10 scale expansion.
However, even for the lowest ozone concentrations and hence weakest absorp-
tions,identification of the 9.48-micron wavelength was made unambiguously
by counting the interference fringes. |

The absorptivity of the 9.48-micron band appropriate to these studies
was determined as described in Section III-F-1, and all ozone concentrations
from infrared measurements reported here were calculated by using an absorp-
tivity of 4.23 X 10._4 Ppm -1 m—l RTP.

Preparation of Ozone Samples. 1In the initial experiment, a 5.4-liter

bulb was filled to 1 atm pressure with an ~17 ozone-in-oxygen stream from
a Welsbach ozonmizer. The contents of the bulb were then flushed with

nitrogen into the environmental chamber, which had already been filled to
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1 atm pressure (733 torr) with purified air35 at 298.5 K. The resulting
ozone. concentration in the chamber was approximately 10 ppm, which was
usually immediately reduced to ~2-5 ppm by flushing the chamber with pure
air. The strong absorption at 9.6 microns from this high ozone concen-
tration was used to optimize the infrared scanning parameters and other
experimental conditions. To study successively lower concentrations below
2 ppm, the chamber was flushed for specified lengths of time with additional
pure air. After each flush, the chamber contents were allowed to equilibrate
as shown by constant ozone concentrations measured by both UV absorption
(Dasibi) and chemiluminescent (Monitor Laboratories) ozone analyzers,
which were employed as convenient monitors of relative ozone levels during
the experiment. Data obtained with these instruments also permitted calcu-
lation of the average ozome decay rate due to decomposition at the chamber
walls and sampling losses. This rate (k = 9.0 X 10_4 min—l) was used to
make small corrections necessary to normalize the KI and LPIR ozone deter-
minations to the same point in time as discussed below.

In succeeding experiments, the ozone sample was made up in a 0.5-
liter bulb and flushed into the chamber to produce an ozone concentration
of 1.0 ppm. This sample was then successively diluted as before to study
lower concentrations.

2% Neutral Buffered Potassium Iodide Measurements. Two percent KI ab-

sorbing reagent buffered at pH 6.89 was supplied by the ARB. Solutions were
kept cool and in dark containers and were not more than four weeks old when
used. To obtain an ozone measurement, 20 ml of this reagent were pipetted
into each of two all-glass impingers, which were connected in sequence via
ungreased ball joints to a carbon vane pump at one end and a sample probe
in the evacuable chamber at the other (see Figure 30). A critical orifice
was used to insure a constant sample flow rate of approximately 1 liter per
minute, and the preéise rate was accurately calibrated against a bubble
meter. Knowing the flow rate, sample times (5, 10, or 24 minutes) were
measured on a stopwatch to obtain exact sample volumes. For the studies
carried out at 37 and 507 RH, sampling periods were either 5 or 10 minutes,
and 10 ml of reagent were used in the impingers. For the study conducted

at ~187%, sample periods were 24 minutes and 20 ml of reagent were employed.
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No dependence of measured ozone concentration on sampling period was
observed in this investigation. In all but one study the impinger samples
were read after 3-5 minutes. Data obtained in a study in which the samples
were allowed to develop for 30-50 minutes were subsequently corregted to

4 minutes after establishing the dependence of absorbance on time over a
period of one hour.

The samples were read on a Bausch and Lomb Spectronic 20 spectro-
photometer at 350 nm. Two matched cells were used for the sample and a
blank consisting of unreacted absorbant solution. The absorbances were
converted to ozone concentrations,using a calibration function suppliéd
by the ARB. The resulting ppm (at 760 torr and 298 K) concentrations
were corrected to the respective pressures and temperatures of the-experif
ments described below. TFor concentrations of ozone above 0.55 ppm, samples
were diluted82 by pipette in the ratio 1 to 3 or 1 to 2, so that all
absorbances were less than 0.5 and the corresponding ozone concentrations
could be interpolated directly from the calibration function.

To obtainvan independent calibration function for the particular
Spectronic 20 spectrophotometer being employed in this study, an approxi-
mately 0.1 N sodium thiosulfate (Mallinckrodt No. 8100 Analytical Reagent
Grade) solution was prepared and standardized83 by titrating accurately
weighed amounts of primary standard grade potassium dichromate (Mallinckrodt
No. 6772). The standard sodium thiosulfate (0.095 N) was then used to
standardize83 an iodine solution prepared from U.S.P. Grade KI (Mallinckrodt
No. 1112) and analytical reagent grade iodine crystéls {Mallinckrodt No.
1008). An aliquot of the standardized iodine solution (0.049 N) was
diluted with ARB 2% NBKI to arrive at a working standard whose concentra-

tion was equivalent to 1 uf of 0, per ml.25 A series of aliquots of the

3
working standard were further diluted with ARB 27% NBKI and their absorbances
read on the Spectronic 20 at 350 nm. The data obtained were in excellent
agreement with those furnished by the ARB.

Results and Discussion. Quantitative infrared data obtained in two

separate experiments in an initial study are summarized in Table 14. The

ozone concentrations were calculated from the experimentally determined

4 -1 -1
m

absorbances (logloIO/I) and from the absorptivity 4.23 X 10 ppm RTP.
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In order to (a) take advantage of the fact that several infrared
spectra could be recorded during the time required to obtain the KI impinger
samples, and (b) directly compare IR and KI determinations, the IR ozone
concentrations (Column 5, Table 14) were corrected to the time halfway
through the corresponding KRI sample. The corrections were made according
to the first order function

“htprtg)

[0,] = [0,] e (4)
3t 37t

where tKI was the time halfway through the impinger sample, tIR was the time
4

at which an infrared scan reached 9.48 u, and k(= 8.0 X 10 minhl) was

the average first-order rate of loss of ozone (due to sampling and wall
decomposition) observed during eight different sample periods using a
continuous ozone analyzer (Dasibi Model 1003). The normalization of the IR
ozone concentrations to the impinger halftime involved corrections of less
than 8 ppb of ozone, except for the highest concentration (1.2 ppm), for
which the correction was 10 ppb.‘

The normalized IR ozone concentrations for each impinger sample were
averaged, and the final two columns of Tablel4 are compared to the corres-—
ponding KI ozome concentrations. The latter were obtained from measured
absorbances for impinger samples and a linear regressiom fit to the ARB

calibration data
Ozone = 1.0095 (absorbance) - 0.0015 (5)

Calibration data obtained in our laboratory, using U.S.P. Grade KI, yielded
a function (ozone = 0.987 absorbance + 0.0014), which was in excellent
agreement (27%) with the ARB data. Earlier calibration data obtained in our
laboratory using reagent grade KI yielded ozone concentrations lower by

approximately 5%7. We subsequently 1earned84’85

that reagent grade KI
often contains a reducing agent to prevent the oxidation of iodide to
iodine during shelf life, whereas KI meeting U.S.P. specifications usually
contains little or no reducing agent.

The KI and IR data from Table 14 are plotted in Figure 33. The
linear regression equation for these data for an unrestricted intercept is

(0,10 = 1.12 {03]IR + 0.001 (6)
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where ozone concentrations are in parts per million, and the standard

deviation for the slope and intercept are *0.03 and *0.014, respectively.
Thus, results from this experiment suggested that the ARB 27% NBKI method
‘yielded ozone concentrations some 12% higher than concentrations obtained

from absolute infrared measurements.

Humidity Effect. During the course of these experiments, the humidity

ranged from ~20% down to ~10% as the ozone sample was diluted by flushing
the chamber with essentially dry air. (It was not believed important at
the time of these experiments to hold the RH rigorously constant.) However,
a commercial UV analyzer (Dasibi Model 1003) was being used as a convenient,
continuous "real time" monitor of the relative ozone concentration in the
chamber, and it was observed that, Whereas the ratio of KI to IR concentra-
tions was ~1.1, the ratio of Dasibi to IR concentrations was approximately
1.2, although the Dasibi itself was calibrated by the ARB 27 NBKI method
and therefore should have yielded concentrations in the same ratio to the
IR measurements.

It was first demonstrated that the difference observed between the
Dasibi and 2% NBKI measurements was not due to the fact that the chamber
experiments represented a static sampling condition, whereas the normal 2%
NBKI calibration procedure is conducted using a dynamic flow system. The
only other obvious difference in procedure appeared to be the fact that
the ARB calibration procedure is normally conducted at ambient relative
humidities {which typically might range from 40-60%), whereas the chamber
experiment was carried out at an average relative humidity of approximately
18%. To investigate the possible dependence of the 27 NBKI method on
relative humidity, a comparison of ozone concentrations measured simultane-
ously by IR and 2% NBKI was made as described above, but with the relative
humidity in the chamber held at 50% throughout the experiment. Data
obtained in this experiment were not corrected for the very slow ozone
decay in the chamber or for the small sampling losses, since from the
previous analysis it was clear that these corrections (typically less than
5 ppb) were negligible compared to random variations in the KI bubbler

measurements (see Table 14).
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The data obtained are shown in Table 15 and are plotted in Figure 34.

Linear regression amalyses of these data yielded the functions

[03]NBKI - (1.23 + 0.06)[031IR + (0.001 *+ 0.034) (7)
[0,1°%5F = (1.2  0.05)[0,1™ - (0.030 * 0.027) (8)
[0,17%%F = (0.9 = 0.06)[0,1"**" - (0.028+ 0.027) )

Thus, for 50% relative humidity, the Dasibi (DSBI) and 2% NBKI data are in
good agreement as expected, but both are some 23% higher than the concen-
trations measured by the infrared method. These results strongly suggest
that the response obtained by the 27 NBKI method is dependent upon the
relative humidity of the ozone sample stream, although we are unaware of
any obvious chemical interpretation for this effect, since the reaction

that is presumed to hold25

2KI+03+H20+12+02+2K0H (10)
takes place in an aqueous solution. Followiﬁg completion of the present
study, an extensive joint investigation of humidity effects by the LAAPCD,
ARB, and EPA (Region IX) yielded data for the 2% NBKI method and Dasibi

ozone analyzers, which are consistent with the data reported here‘.86

Comparison with Ultraviolet Measurements. An additional significant

study in this investigation was a collaborative effort with W. B. DeMore,87
who participated in an experiment similar to those described above. 1In
this study, conducted for ozone samples in dry matrix air (RH ~3%) in the
evacuable chamber, DeMore recorded data with a Dasibi ozone analyzer which
he had previously calibrated against a l-meter UV photometer. Simultane-
ously, ozone concentrations were also measured using the in-situ long-path
infrared spectrophotométer, 27 NBKI impingers, and two. Statewide Air
Pollution Research Center (SAPRC) Dasibi instruments previously calibrated

against the 27 NBKI method at ambient relative humidity. The data obtained

in this study are summarized in Table 16, and appropriate linear regression
equations for the various sets of measurements are as follows:

ov

[0,1°7 = (0.99 + 0.02)[0,1™ + (0.016 + 0.011) @y

P 116 £ 70.06)[0,)™F + (0.013 £ 0.023) (12)

31
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Table 15. Ozone Concentrations Measured Simultaneously at 50% Relative Humidity
by Long-Path Infrared Spectroscopy, 2% Neutral Buffered Potassium
Iodide, and a Dasibi UV Ozone Analyzer Calibrated Against 2% NBKI?

Ozone from Dasibi

Ozone from LPIRb Ozone from 2% NBKI Calibrated Against 2% NBKT
(ppm)  (ppm) (ppm)
0.655 0.792 ‘ 0.787
0.648 0.834 0.772
0.651 0.790 0.751
0.509 , 0.623 0.595
0.524 | 0.638 0.585
0.348 0.463 0.422
0.241 0.275 0.252

2 Sample temperature and pressure were 24.3°C and 736 torr, respectively.

D 4 -1 -1

Based on absorptivity of 4.23 x 10 ' ppm = m ~ RTP from Reference 59, and
pathlength of 69.2 m.

c . . . L
Calibrated at ambient relative humidity.

78



o

£
- Q.
H Q.
| <~ 08k
()]
P &
Q L]
L
1 S 06
; o
| =
= 04+
| . >
L
b =
! 2
] N O2+ /
1 Q |
{ O 00 | | | |

Y00 02 04 06 08 10
- OZONE (INFRARED), ppm
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[03]NBKI = (1.16 + 0.02)[0,]" - (0.007 * 0.012) (13)
[03]DSBI #1 = (1.25 * 0.03)[03]IR + (0.012 * 0.017) (14)
I03]DSBI #2 = (1.24 % 0.03)[03]IR + (0.007 = 0.017) (15)

Equation 11 shows that the UV measurements made by DeMore, using a
Dasibi instrument as a transfer standard and based on an ultraviolet
absorptivity of 135 cm_l atm—1 at 253.7 nm, were in ekcellent agreement
with simultaneous in-situ long-path infrared measurements based on an
infrared absorptivity of 4.23 X'lO_4 ppm_1 m—l RTP. Thus, the two
spectroscopic methods gave comparable results (as shown in Equations 12 and
13), for comparison with the 2% NBKI measurements. Specifically, for the
dry sample stream provided in this experiment, the ARB 2% NBKI method
yielded ozone values from 14-16% higher than either the UV or IR measurements.
However, as seen from Equations 14 and 15, the two SAPRC Dasibi instru—
ments which had been previously calibrated by the ARB 27 NBKI method at

86 to respond

ambient relative humidities, and which have been shown
essentially independently of the RH of ozone sample streams, gave ozone

values some 25% higher than those obtained by the IR (or UV) measurements.
The independence of the Dasibi data, with respect to the relative humidity
of the sample stream, is illustrated by the agreement between Equations 14

and 8 obtained for relative humidities of 37 and 50%, respectively.

Comparison with a Previous Infrared Study. 1In the only previously
76

published report’® of an investigation of the neutral buffered potassium
iodide method by long-path infrared spectroscopy, Kopczynski and Bufalini
describe a study of the 1% NBKI method over a range of ozone concentrations
from 2-20 ppm, apparently for dry air. For an unrestricted intercept

they obtained regression Equation 16 '

NBKI

[o - 0.947[03]IR - 0.22 (16)

3]
with a standard error estimate, Sy, of #0.28 ppm. When the intercept was
restricted to zero their data fit Equation 17

NEKT

[0 = 0.929[0,1"% (17)

3]

with a standard error, Sy, of #0.32 ppm.

81



The slopes of 0.95 and 0.93 in these equations may be contrasted with
those of 1.14 and 1.23, observed in the present study for the 2% NBKI
method for 3Z and 507 RH, respectively. Kopczynski and Bufalini concluded
from their results that 1:1 stoichiometry is valid for the 17 NBKI method
within their experimental error. However, in view of the recently demon~
strated effects on KI measurements due to humidity, the nature of potassium
iodide reagent employed, etc., and since Kopczynski and Bufalini worked at
ozone concentrations from 2-20 ppm with a resulting large intercept for
extrapolation of their data to the ambient concentration range, the 10-25%
deviation from unit stoichiometry observed in this and other recent investi-
gations could well have been masked in their earlier study. Thus, although
different conclusions were reached in the previous76 and present infrared
studies concerning the stoichiometry of the NBKI methods, there is no

inherent conflict in the data obtained in these investigations.

Conclusions. Results obtained in this study indicate that rather
than being unity, as had been thought prior to 1974, the stoichiometry of
the 27 NBKI ozone (or oxidant) analyzer calibration procedure employed by
the California Air Resources Board from 1960 until June 1, 1975, ranges
from ~1.12 to ~1.25, depending upon whether the relative humidity of the
sample stream is low or high, respectively. The results obtained at low
humidities may also be relevant to the 17 NBKI calibration procedure speci-
fied in the Federal Register,74 in view of the near equivalence (to within
~5%) of the ARB 2% NBKI method and EPA 17 NBKI method demonstrated by
most,27’88—90 although not all,91 previous comparisons of the two methods.
Further investigation of the 1% NBKI Federal Register method and develop-
ment of a replacement for this calibration procedure are currently being
carried out by the EPA.92 Effective June 1, 1975, the California calibra-
tion procedure for oxidant (ozone) was changed from the 2% neutral buffered
potassium iodide method to an ultraviolet photometry method employing a
l-meter UV photometer as a primary standard and a Dasibi UV ozone analyzer
as a portable secondary standard for field calibrations.93

Within experimental uncertainties encountered in the use of the
potassium iodide methods by different laboratories, the data obtained for

comparison with long-path infrared measurements are consistent with data
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obtained for comparison of the NBKI methods with UV photometry (in our

27,90,94,95)

laboratory, as reported here, and in other more extensive studies
and with recent data reported for comparison with gas-phase titration (GPT)
measurements.94 It thus appears that IR, UV, and GPT measurement methods
for ozone have been reconciled and, when carefully carried out, that each
can be relied upon to provide absolute ozone concentrations against which
ambient air analyzers can be calibrated, either directly or by means of
"transfer" standards. Uniform adoption of one or more of these methods by
local, state, and federal agencies—-and abandonment of the wet chemical

potassium iodide methods—-seems necessary and desirable if an accurate,

reliable, and common data base of ozone measurements is to be achieved.
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F. Conclusions and Implications of Corrected South Coast Air Basin
96

Oxidant Data

Introduction. The Federal Air Quality Standard for oxidant,97 many

health alert levels and control programs for oxidant, and models of exidant
formation and transport are based substantially on air monitoring data
from the Los Angeles Basin, which is the most demsely populated portion of
the California South Coast Air Basin. Figure 35 shows that portion of the
South Coast Air Basin which surrounds metropolitan Los Angeles and lies
below the 1500-foot contour of the mountains that define the Los Angeles
Basin. Currently, some 10 million people live in this air basin.

As discussed above, in June 1974, the ARB and the LAAPCD anmncunced
jointly that different methods of calibration of oxidant monitoring imstru-
ments cause oxidant measurements made by the LAAPCD to be '"one-quarter to
one-third" lower than ARB measurements made at the same time and place.98
This significant measurement disparity was first observed more than a year
earlier, during the late spring and early summer of 1973, when the ARB
operated a mobile air momitoring van—-first, near the Pomona air monitoring
station of the LAAPCD and, second, adjacent to the LAAPCD station in Azusa.
Oxidant measurements recorded in the ARB van were found to be 20 to 40%
above those recorded by the Pomona LAAPCD station and about 30% higher
than those recorded by the Azusa LAAPCD station.99 Since the sampling
techniques and instruments used were similar,‘it was suspected that the
measurement discrepancy resulted from differences in the methods used to
calibrate the analyzers. Accordingly, the Califormia Air and Industrial
Hygiene Laboratory (AIHL) and the ARB performed a laboratery study using
ozone, which showed that the methods used by the ARB and the Environmental
Protection Agency (EPA) to calibrate their oxidant analyzers were equivalent
within experimental error under the conditions of the study, but that the
method used by the LAAPCD to calibrate its oxidant analyzers yielded
readings 69 to 73% as high as those obtained by the ARB calibration methc)d.88’99

Until June 1, 1975, all three agencies (ARB, EPA, and LAAPCD) used the
oxidation by ozone of aqueous iodide ion to molecular iodine as the basis of
their calibration methods. The ARB’? used a 2% neutral buffered potassium
iodide absorbing solution and determined the released molecular iodine

spectrophotometrically. The spectrophotometer was calibrated against iodine
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solutions which had been standardized by titration with N328203(aq). The
Na25203(aq) was standardized against primary grade KH(IO3)2. The EPA
calibration procedure74 was similar to that formerly used by the ARB,
except that essentially dry air and 17 neutral buffered KI were used, and

the spectrophotometer was calibrated using I, solutions standardized

2
against primary grade A5203. The LAAPCDlOO used 27 neutral unbuffered KI,
and the released 12 was titrated, using 0.002 E_N325203(aq) which had been
standardized against K2Cr207.

Because the LAAPCD calibration method is difficult to perform,88 to
confirm the ATHL/ARB results

1

'...a joint ARB-LAAPCD study was conducted at the laboratories
of the LAAPCD. Two colorimetric oxidant analyzers, one
provided by the ARB and one by the LAAPCD, were used to sample
simultaneously from a common manifeld. The ozone concentra-
tion in the manifold was determined by the three [EPA, ARB,
LAAPCD] calibration methods. Again it was demonstrated that
the EPA and ARB procedures were approximately equivalent,
while, on the average, concentrations by the LAAPCD method
were approximately 70% of those by the ARB method.'??

Because of the discrepancy between LAAPCD oxidant measurements and
non-Los Angeles County oxidant measurements, on August 15, 1974, the ARB

appointed an ad hoc committee to evaluate oxidant calibration methods.

27

. uv -
The ad hoc committee”™’ used a UV photometer ([03]absolute) to calibrate

the response to ozone of a Dasibi ozone monitor ([OB]Dasibi)' The Dasibi
was then used to determine the response of the LAAPCD, ARB, and EPA iodi-

metric calibration methods ([03] [0 Y. The latter

LAAPCD’ [03]ARB’ 3]EPA
measurements were made simultaneously at about 50% relative humidity.

Analysis of the resulting data yielded the following regression lines:27
[0,1% - 1.054[0,] + 0.028 (18)
3“absolute : 3°'Dasibi
(03] gy = 1-29003]p g 4p5 = 0-005 (19)
(031 anpcp = ©-96103]p, 0555 — 0-032 (20)
[03]EPA = 1.24[03]Dasibi - 0.035 21)

However, the responses of all the iocdimetric methods are humidity—

86
dependent, whereas the response to ozone of Dasibi ozone monitors are
not dependent on humidity. This humidity effect was studied by a joint

ARB-LAAPCD-EPA team.52°101 Tt should be realized that the EPA calibration
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procedure74 employs essentially dry air. The response of the various
iodimetric methods was determined at 0, 20, 40, and 60% relative humidity
(RH), compared to that of a Dasibi which had been calibrated by the ARB 2%
neutral buffered KI method. Because field ozone monitors are calibrated
by spanning them against iodimetric measurements, the study team concluded

101

in their draft report that regression lines forced through zero best

approximéted actual calibration procedures for field instruments. The
slopes of the regression lines forced through zero given in the final report
of the ARB-LAAPCD-EPA humidity study,86 may be used to formulate an equation
which gives the variation with relative humidity of the relative response

of the ARB and LAAPCD iodimetric calibration methods:

3

= 3,56 X 10

/[0 RH + 1.28 (22)

[03]ARB 3]LAAPCD

At 50% RH, this equation gives a value of [OB]ARB/[O3]LAAPCD = 1.46.
Significantly, if the data of the ad hoc committee27 are also forced to

31 ars’ %3] Lanpcn
Previous studies of ozonized room air obtained the following values for
this ratio: 1.37, 1.43, and 1.46 by Tang, Jeung, and Imada;88 1.34 by
102 4nd 1.33 and 1.39 by Holland.103 A value of 1.37 was obtained

zero, then at RH fSOZ a value of [O = 1.43 is obtained;

Crowe;
by Dickinson104 for the ratio of the LAAPCD iodimetric calibration pro-

cedure when run with and without buffering at pH 7. The average of these

. - + s o
values is [OS]ARB/[OB]LAAPCD 1.40 = 0.05. i;inlflcantly, after an
independent assessment of the available data, the ARB also concluded
that [03]ARB/[03]LAAPCD = 1.4,

As described above (Section III-E-2), the SAPRC investigation of the
validity of the ARB calibration technique showed that at 507 RH,

IR _ e . .
[03]%%solute/L03]ARB = 0.81, which is in good agreement with the value of
[03]absolute/[03]ARB = 0.78 obtained by the ad hoc committee using UV

photometry, Taken together, these two values suggest that ambient oxidant
data referenced to the ARB 27% neutral buffered KI method be corrected using
the following equation:

[03]absolute =0.8 [OB]ARB (23)

Again, this conclusion is in exact agreement with a previous ARB recom-

. 105 . ‘ _ .
mendation. Further, if [03]ARB/[03]LAAPCD = 1.4, then the following .
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equation should be used to correct ambient oxidant data referenced to the

LAAECD 2% neutral unbuffered method:

[03]absolute = 1.1 [OB]LAAPCD (24)

Calculations. We have used Equations 23 and 24 and a computer (IBM

360/50) to generate an internally consistent set of ambient oxidant data
for 18 air monitoring stations located in the South Coast Air Basin.
Hourly average oxidant data, stored on magnetic tapes, were obtained

from the ARB and the LAAPCD for the years 1955 through 1974. Hourly
average oxidant data from air monitoring stations in Los Angeles County
are available on tapes from the LAAPCD. Under contract to the ARB, hourly
average oxidant measurements are made by non-Los Angeles statioms. These
measurements comprise the data base stored on tapes by the ARB.

The computer program used surveyed the data available one day at a
time, dropping days for which three or more consecutive daytime hours of
data were lacking. When one or two consecutive hours of data were lacking,
a four-point Lagrangian interpolation was used to estimate the missing
data points. The resulting set of internally consistent (hereinafter

termed "corrected") oxidant data is probably accurate to about * 10%.

Results. For the full 19-year period from 1955 through 1974, complete
data are not available for any of the 18 stations surveyed. When data are
available for a specified station and year, they are mot available for all
365 days of that year. Further, because the days for which data are lacking
are not distributed throughout the year in a strictly random fashion, no
normalization to 365 days was possible. Therefore, all yearly totals
reported here (Tables 17-19) are minimum values. Conversely, because the
missing days are not bunched either during the smog season or during the
winter, the data also do not contain any significant intrinsic biases.

Because the South Coast Air Basin oxidant data are voluminous, we
have chosen to present here only data for the years 1973 and 1974 and for
the following nine air monitoring stations: Long Beach, Los Angeles
Downtown, Burbank, Pasadena, Azusa, and Pomona (all in Los Angeles County);
Anaheim (Orange County); Riverside (Riverside County); and San Bernardino

(San Bermardino County). Figure 35 shows the locations of the nine air
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monitoring stations from which the data used in this study were taken. As
was stated above, the Los Angeles County stations used oxidant analyzers
calibrated by the LAAPCD method,100 while the non-Los Angeles County
stations used analyzers calibrated by the ARB method.25 Data from other
stations and for other years will be published as an SAPRC report.106

To facilitate discussion of the implications of the corrected data
presented in Tables 17-19, we have summarized the corrected hourly average
values of oxidant in terms of the number of days per year, the number of
hours per year, and the yearly‘dosage (hours X concentration) for which
the following levels of oxidant were equaled or exceeded: 0.08, 0.20, and
0.35 ppm. These levels were chosen because 0.08 ppm for 1 hour is the
Federal Air Quality Standard for oxidaﬁt, and 0f20 and 0.35 ppm for 1 hour
are the California first-and second-episode criteria levels for oxidant.107
Reference will also be made to the California third-state episode criteria
level (0.50 ppm for 1 hour and predicted to persist for an additional hour)

for oxidant and to the Federal "significant harm" level (0.60 ppm) for

oxidant.108

On May 15, 1975, the California Air Resources Board adopted UV photo-
metric measurement of ozone as the state reference method for the calibration
of oxidant monitors.93 On the same day, the ARB changed the state's seéond—
and third-episode criteria levels for oxidant from 0.40 and 0.60 ppm to
0.35 and 0.50 ppm.?to7 Changes were made because 'the [0ld] stage 2 and
stage 3 levels...[were] based predominantly on experimental exposures of
human subjects to ozone, calibrated using neutral buffered potassium
iodide reagent."109 Accordingly, since the neutral buffered potassium
iodide calibration procedure for ozone yields readings high by about 25%, the
ARB chose to reduce the old stage 2 and stage 3 episode criteria levels so
that they will be in better conformity with ambient oxidant measurements

referenced to UV photometric measurements of ozone.

Oxidant Transport. For many years, the air monitoring data--as

reported by the LAAPCD and the APCD's of Riverside, San Bernardino, and
Orange counties—-have shown that the highest oxidant levels in the South
Coast Air Basin occur at cities such as Riverside and San Bernardino, which

lie in the less-populated eastern portion of the basin. The conventional
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explanationllo’lll

of this seeming anomaly has generally been the following:
Large amounts of hydrocarbons and oxides of nitrogen are emitted during the
~ morning traffic rush hour, principally in the more densely populated
western regions of the basin. While being transported toward the eastern
portion of the basin by the prevailing onshore sea breezes, the oxides of
nitrogen promote the photooxidation of the hydrocarbon pollutants. Ozone,
the principal component of oxidant, is a major product of this complicated
process.llz_116 Because it is comnsumed rapidly by NO to produce NO2 and

02, ozone does not begin to accumulate until almost all of the NO has been
converted to NOZ' Because ozone formation is delayed, downwind transport
causes oxidant levels in eastern cities of the basin, such as Riverside

and San Bernmardinc, to exceed those of the more densely populated regions

to their west.

This comventional view was reiterated in a recent National Academy
of Sciences-National Academy of Engineering (NAS-NAE) report,117 which stated:

"Thus, over a period of hours the mass of smog-laden air from
downtown Los Angeles experiences a growth in ozone concentration
as it travels eastward so that a shift in maximum ozone concen-
trations eastward should be expected, and has been confirmed by
measurements. The shift in ozone concentrations to the east also
has been enhanced by the growth in urbanization in that region,
which causes increases in local hydrocarbon and NOX emissions."

One can examine the two parts of this statement separately. First, is
there a downwind transport of oxidant,and, second, does oxidant buildup
occur during downwind transport?

On the basis of published data, the evidence for downwind transport of
pollutants is convincing. For example, Figure 36 presents the diurnal
variation of oxidant levels on July 25, 1973, at four air momitoring sta-
tions—-Los Angeles Downtown, Pomona, Riverside, and Palm Springs--which lie
on a west—east axis across the South Coast Air Basin. The second late-
afternoon peak in the oxidant profiles at Pomona, Riverside, and Palm
Springs is a common occurrence, which is best explained by windborne
transport of pollutants to the inland cities from regions nearer the coast.
This long-held view of pollutant transport is supported by two recent
studies. The first, a fluorescent tracer study, showed that some coastal
air parcels do reach inland cities, such as Riverside and San Bernardino,118

in the span of one day. The second, analyses of observational data of
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air pollutants from an airborne sampling system, indicated that ozone and/or
its precursors in an episode were transported in the Los Angeles basin from
the metropolitan area to the eastern portion of the basin.119

It is interesting that if the oxidant maxima in Figure 36 are spaced
proportionately to the distances between the four cities, as has been done
in the figure, the second oxidant maxima fall on the same connecting line.lzO
This result suggests that the average wind speed in the basin on July 25,
1973, was about 10 mph in an easterly direction. In fact, the average
ground wind speed on that day actually was approximately 8 mph in an east-
northeasterly direction.

The evidence for the NAS-NAE statement "...a shift in maximum ozone
concentrations eastward should be expected, and has been confirmed by

measurements"ll-7

is typified in Figure 37(a). This shows the number of days
in 1973 on which the reported average hourly oxidant readings equaled or
exceeded 0.20 ppm at six South Coast Air Basin air monitoring stations.
Clearly, the data as reported do indeed suggest an inland buildup of oxidant.
However, when all the air monitoring data are placed on a consistent scale,
no matter what scale is used, the corrected data [Figure 37 (b) through (e)l]
show that, in 1973, cities such as Pasadena, Azusa, and Pomona actually

had significantly higher oxidant levels than did Riverside and San Bernardino.
Tables 17 and 18 show that this conclusion also holds for 1974. It is also
.true for all other years for which data are available (1963-1970). C(Clearly,
oxidant levels do not increase along a west-to-east axis across the basin.
However, data from other stations indicate that they do increase along a
southwest-to-northeast axis across the basin, which roughly matches the
orientation of the prevailing onshore sea breezes. Thus, buildup of oxidant
during downwind transport may explain the fact that cities such as Pasadena,
Azusa, and Pomona usually have higher oxidant levels than do locations

which lie upwind of them, such as downtown Los Angeles.

Oxidant Levels. Table 17 shows that when LAAPCD data are appropriately

corrected, the number of days on which the hourly oxidant concentration
equals or exceeds 0.08 ppm is increased by at least 5% at the six Los
Angeles County stations, and that the average increase is almost 20%.

Table 18 shows that at these same six Los Angeles County stations, the
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. a,b,c
Table 17. Days for which Oxidant > 0.08, 0.20, and 0.35 ppm >Te
1973
Station 1B LADT Bur Pas Azu Pom SB Riv Ana
Total Days 347 349 353 350 346 351 322 355 344
20.08 ppm
AS REPORTED 17 134 159 183 184 174 16¢ 195 105
CORRECTED 34 160 171 134 194 189 154 172 72
RATIO 2.0 1.2 1.1 1.1 1.1 1.1 0.91 0.88 0.69
20.20 ppm
AS REPORTED 2 11 12 53 61 - &40 80 71 15
CORRECTED 2 15 19 68 82 52 33 46 7
RATIO i.0 1.4 1.6 1.3 1.3 1.3 0.41 0.65 0.47
20.35 ppm
AS REPORTED 0 1 0 4 6 o 3 4 0
CORRECTED 0 2 0 & 9 2 0 ] (1]
1974
Station 1B LADT Bur Pas Azu Pom SB Riv Ana
Total Days 350 333 360 351 360 360 360 356 335
20.08 ppm
AS REPORTED 27 156 190 228 220 178 195 208 101
CORRECTED 37 175 207 243 233 194 172 184 60
RATIO 1.4 1.1 1.1 1.1 1.1 1.1 0.88 0.89 0.59
20.20 ppm
AS REPORTED 0 14 30 52 80 49 95 94 4
CORRECTED G 30 48 80 99 72 73 65 2
RATIO - 2.1 1.6 1.5 1.2 1.5 0.77 0.69 0.50
20.35 ppm
AS REPORTED 0 0 1 G 2 0 25 8 4]
CORRECTED 0 4] 1 2 [ 4] 1 Q 0

a) LB = Long Beach, LADT = lLos Angeles Downtown, Bur
San Bernmardino, Riv

Azusa,

b) Corrected data means LAAPCD Data x 1.1 and ARB Data x 0.8

Pom = Pomona, SB

c) RATIO = CORRECTED/AS REPORTED

94
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Table 18. Hours for which oxidant > 0.08, 0.20, and 0.35 ppm a,b,c

Station
Total Days

AS REPORTED
CORRECTED
RATIO

AS REPORTED
CORRECTED
RATIO

AS REPORTED
CORRECTED

Station
Total Days

AS REPORTED
CORRECTED
RATIO

AS REPORTED
CORRECTED
RATIO

AS REPORTED
CORRECTED

z
:

1973

Bur Pas Azu Pom SB Riv

347 349 353 350 346 351 322 355

30.08 ppm

46 615 745 | 1122 1129 936 1182 1363
85 777 894 1282 1267 1088 962 1101
1.8 1.3 1.2 1.1 1.1 1.2 0.81 0.81

20.20 ppm
2 38 25 147 189 105 244 264
4 s1 46 217 264  -150 88 109
2

.0 1.3 1.8 1.5 1.4 1.4 0.36 0.41

30.35‘ppm .

0 5 0 7 10 0 5 7
0 6 o i 15 2 0 0
1974
1B LADT ‘Bur PAS Azu Pom SB Riv

350 . 333 360 351 360 360 360 356

20.08 ppm

53 773 995 1246 1280 963 1414 1504
83 983 1186 1446 1490 1136 1150 1205
1.6 1.3 “ 1.2 1.2 1.2 1.2 0.81 0.80

20.20 ppm
0 25 72 131 222 120 401 333
0 59 115 210 306 197 217 171
- 2.4 1.6 1.6 1.4 1.6 0.54  0.51
_ 20.35 ppm
0 0 1 0 3 0 36 9
o 0 2 3 8 ) 1 0

Ana
344 -

389
213
0.55

3

0.42

Ana
335

372
214
0.58

a) LB = Long Beach, LADT = Los Angeles Downtowﬁ, Bur = Burbank, Pas = Pasadena,

Azu = Azusa, Pom = Pomona, SB = San Bernardino, Riv = Riverside, and Ana = Anaheim,

b) Corrected data means LAAPCD Data x 1.1 and ARB Data x 0.8.

¢) RATIO = CORRECTED/AS REPORTED.

95



number of hours > 0.08 ppm is increased by at least 127%,with the average
increase being almost 30%. For Los Angeles County stations, the increases
observed relative to the first-stage episode criteria level of 0.20 ppm
are substantially larger, though more variable. Thus, the number of days
> 0.20 ppm increase by 20 to 130%,with the average increase being 50%,

- and the number of hours increase by 40 to 1407%,with the average increase
béing 607%.

Tables 17 and 18 :alsc show that, if the data from the San Bernardino,
Riverside, and Anaheim stations, which are referenced to the ARB 27 neutral
buffered KI method, are appropriately corrected, then days = 0.08 ppm
decrease by an average of 20%,and hours > 0.08 ppm decrease by an average

of 30%, while days and hours > 0.20 ppm decrease by 23 to 707 and 46 to 80%,
respectively.

Examination of the data in Tables 17 and 18 shows that, once the data
have been appropriately corrected, the new second-stage episode criteria
level of 0.35 ppm (formerly 0.40 ppm) has been exceeded more frequently
at Pasadena, Azusa, and Pomona than it has at San Bernardino and Riverside,
while the data as reported suggest that the converse is true. Also, the
corrected data show that from 1971 through 1974 the new third-stage episocde
criteria level of 0.50 ppm (formerly 0.60 ppm) was exceeded only on eight
days, once at Los Angeles Downtown, once at Pasadena, on four days at
Azusa, and twice at Upland. Using data as reported, no third stage-levels

were recorded at any of the LAAPCD statioms, although the San Bermardino

APCD reported two third-stage episodes at Upland.

Oxidant Dosages. It is widely recognized that reliable assessment of

the health effects of aﬁy pollutant should not be based simply on peak
exposure levels, which are frequently brief in duration, but on cumulative
dosage above some specified exposure level, where dosage is defined as the
integral of the concentration of the pollutant over the time of exposure.
This concept is illustrated in Figure 38, which presents the diurnal
variation of oxidant levels (both as reported and corrected) at Upland

on July 25, 1973. The shaded portion of the figure is the uncorrected
Upland dosage above the old California 0.40 ppm second-stage episode

level for oxidant. This area can be defined mathematically as follows:
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t
2
Dosage (>8) = J/. [£(t)-8] dt (25)
. tl

'where f(t) is the déshed curve, which gives the diurnal variation of the
uncorrected oxidant concentrations {[0x] = £(t)}, & is the specified
exposure level (0.40 ppm), and'tl and t2 (11:00 a.m. and 4:20 p.m.) are
the times between which the oxidant concentration exceeded the exposure
level §.

Figure 39 contrasts the uncorrected and corrected Upland oxidant
dosages for July 25, 1973, to those of Pasadena. With correction, the
Pasadena dosages are almost as high as those in Upland.

The geographical extent of the elevated noontime oxidant dosages of
July 25, 1973, can best be seen by constructing an oxidant contour map of
that portion of the basin surrounded by a 1500-foot elevation barrier.lﬂm123
Figures 40 and 41 present such maps, using data as reported and corrected
data from 20 stations in the South Coast Air Basin. Comparison of the two
maps shows that the data as reported significantly overestimate the extent
of the regions of high dosage, especially near the City of Upland. It also
shows that at noon on July 25, 1973, the regions of high oxidant in the
South Coast Air Basin lay just below the San Gabriel Mountains (Pasadena
and Azusa) directly downwind from major population centers.

Figure 42 presents 1973 yearly oxidant dosages > 0.20 ppm for six air
monitoring stations in the South Coast Air Basin. As before, correction
of the data produces significant shifts in relative dosages with the result
that highest dosages occur at Pasadena and Azusa and not at Riverside and
San Bernardino. Table 19 shows that this result is true for other levels and
stations and for 1974. Specifically, when the data are appropriately
corrected, LAAPCD dosages > 0.08 ppm increase by an average of 30%, and
those > 0.20 ppm increase by 40 to 200%. The decreases in the dosages
experienced at non-LAAPCD stations are also pronounced. Dosages > 0.08 ppm
decrease on the average by 40%, while dosages > 0.20 ppm decrease by 60 to 907%.

It is often assumed that, if a set of oxidant data and the air quality
standards and health-warning episode levels based on those data both are

scaled by the same factor, then the oxidant exposure above the scaled
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FOR | HOUR

July 25, 1973, Oxidant Dosages Greater tham or Equal to
0.20 and 0.35 ppm at the Pasadena and Upland Air Monitoring
Stations (Corrected Data--Pasadena Values X 1.1 and Upland

Values X 0.8).
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Table 19. Oxidant Dosage (ppm X hr) > 0.08, 0.20, and 0.35 ppma’b’C

1973

Station 1B LADT Bur Pas Azu Pom SB Riv Ana

Total Days 347 349 353 350 346 351 322 355 344
20.08 ppu

AS REPORTED 1.32  22.0 27.1 62.0 70.5 47.1 84.7 92.5 14.5

CORRECTED 1.86 29.2 35.5 76.8 86.1 58.9 51.2 55.7 7.62

RATIO 1.4 1.3 1.3 1.2 1.2 1.3 0.60 0.60 0.53
20.20 ppm

AS REPORTED 0 . 3.02 0.61 6.39 8.85 3.38 10.3 11.7 1.27

CORRECTED 0.04 4.15 1.26  10.2 13.6 5.91 2.81 2.91 0.22

RATIO - 1.4 2.1 1.6 1.5 1.7 0.27 0.25 0.17
20.35 ppm

AS REPORTED O 0.54 0 0.34  0.38 o] 0.12 0.12 0

CORRECTED 0 0.77 0 0.64 . 0.82 0 0 0 0

1974

Station LB ‘LADT Bur Pas Azu  Pom SB Riv Ana

Total Days 350 333 . 360 351 360 360 360 356 335
20.08 ppm

AS REPORTED 1.24  28.7 44.7 61.8 78.4 52.1 119 109 12.1

CORRECTED . 1.79  37.5 56.8 77.6 - 96.0 64.8 75.9 67.1 5.92

RATIO | 1.4 1.3 1.3 1.3 1.2 1.2 0.64 .62 0.49
20.20 ppm

AS REPORTED 0 0.31 1.88 4.04 7.78 3.83 24.3 17.8 0.44

CORRECTED .0 0.99 3.48 7.22  13.2 © 6.81 8.20 5.24 0.12

RATIO - 3.2 1.9 1.8 1.7 1.8 0.34 0.29 0.27
20.35 ppm

AS REPORTED 0 0 0 0 .04 V] 0.76 0.14 o

CORRECTED 0 0 0.04 0.03 0.18 0 .02 0 0

© a) 1B = Long Beach, LADT = Los Angeles Downtown, Bur = Burbank, Pas = Pasadena, Azu =

Azusa, Pom = Pomona, SB = San Bernardino, Riv = Riverside, and Ana = Anaheim.
b) Corrected data means LAAPCD Data x 1.1 and ARB Data x 0.8
¢) RATIO = CORRECTED/AS REPORTED
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standard, calculated by using the scaled data, will equal the oxidant exposure
calculated using the old standard and the uncorrected data. For example,

had the state's former second- and third-stage episode criteria levels,

0.40 and 0.60 ppm, respectively, been scaled down by a factor of exactly

0.8 to 0.32 and 0.48, respectively, then one might expect that the dosage
above those corrected criteria levels, calculated by using the scale data,
would equal the old dosage above the former standards, calculated by using
unscaled data.

This is not the case. For example, had the California second-stage
episode criteria level (0.40 ppm) been lowered by a factor of exactly 0.8, then
the new corrected dosages above the mnew corrected episode criteria level
(0.32 ppm) would not have equaled the old uncorrected dosages. Instead,
they would be lower than the old uncorrected dosages by 20%, that is,
decreased by a factor of 0.8. This results from the fact that scaling
both oxidant readings and standards by 0.8 is equivalent to multiplying
Equation 8 by a comstant, k = 0.8. Because this does not change the
limits of integration (see Figure 38), the corrected dosage above the scaled
standard equals the uncorrected dosage above the existing standard multi-

plied by the factor k = 0.8.

t

2
f fkf(t) - k8] dt
t

1

Corrected Dosage (2k8)

t

2
k [f(t) - §] dt = k X uncorrected (26)
dosage (>9)

%

Control Strategies. Uncorrected data show that the maximum hourly average

oxidant level (0.63 ppm), recently measured in the South Coast Air Basin,
occurred at Upland on both July 25, 1973, and June 27, 1974. When corrected,
this level becomes 0.50 ppm, a 20% reduction from the data as reported.

Because this reduction is substantial, it is likely that in the South Coast Air
Basin, attainment of the Federal Air Quality Standard for oxidant of 0.08

ppm for 1 hour may be significantly less difficult than was first thought
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in 1973, when the EPA originally published its strategyl-24 for the linear
rollback of emissions of reactive hydrocarbons in the South Coast Air Basin.
However, only a thorough reevaluation of South Coast Air Basin oxidant
control programs125 can determine whether the hydrocarbon control measures
necessary to reduce the true peak hourly oxidant levels of ~0.5 ppm, not
0.6 ppm, to 0.08 ppm will be significantly less severe—--technically and

economically--than those previously proposed.

Socioeconomic Effects. Regulatory actions taken by local APCD's, when
oxidant levels reach the Californié episode criteria levels of 0.20, 0.35
and 0.59 ppm for one hour, significantly affect the activities of private
citizens, schools, organizations, businesses, and industries. For example,
when oxidant levels reach 0.20 ppm (health advisory alert), APCD's advise
that school children and health-sensitive individuals refrain from strenuous
physical exercise; at 0.35 ppm (warning), traffic reductiohs and curtailment
of industrial emissions are required; and at 0.50 ppm (emergency), businesses
may be closed to reduce traffic, and industrial activities which release
significant emissions, may be directed to cease operations.

Figure 43 compares the maximum hourly average oxidant readings
reported127 on July 25, 1973 by 16 South Coast Air Basin air monitoring
stations to the true readings which would have been reported had consistent
ozone calibration methods been in use at that time. Figure 43 shows that
the use of nonconsistent oxidant data caused two Orange County air monitoring
stations, Anaheim and La Habra, to report first-stage oxidant episodes ,
which did not exist, while the West Los Angeles station in Los Angeles
County failed to report a first-stage episode which did exist. Figure
43 also shows that, while a third-stage alert requiring emergency action
was declared for Upland on July 25, 1973, one should also have been called
for Pasadena, which also experienced an oxidant level of 0.50 ppm for one
hour. | |

Formation of a four-county Southern California Air Pollution Control
District including Los Angeles, Orange, Riﬁerside,and San Bernardino

Counties on July 1, 1975,128 as well as the continued possibility of a

129 should ensure that oxidant

state legislatively mandated basinwide APCD,
episodes are reported throughout the region based upon measurements which

are self-consistent.
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SOUTH COAST AIR BASIN, JULY 25, 1973
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Figure 43. Maximum One-Hour Oxidant Concentrations on July 25, 1973,
at Selected Air Monitoring Stations in Four South Coast
Air Basin Counties, Showing Data as Reported and as
Corrected (LAAPCD Data X 1.1, Non-LAAPCD Data X 0.8).
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Scientific Implications. Observations made in this paper are offered

with the viewpoint that scientific investigators using the published data
and interpreting the oxidant data across the South Coast Air Basin will
wish to make appropriate changes in their data. For example, computer
simulations of photochemical smog formation and transporf in the Los
Angeles Basin should be reexamined. Specificélly, models based partly on
LAAPCD oxidant data and partly on non-LAAPCD datal30 have been validéted
against an inconsiétent data basef

Finally, it is of considerable concern to both the scientific community
and the public that air quality data and standards be credible. The
credibility of air qualit& data and standards based on those data has
already been strained by the N02 meaéurement éontroversy resulting from
the Chattanooga Study.131 The present oxidant measurement controversy has
not helped matters. It is essential that air pollution standards and control
programs be based on consistent data obtaiﬁed by valid experimental methods,

mutually agreed upon by control agencies and research scientists.

Conclusions. The corrected South Coast Air Basin oxidant data clearly

. show that cities located below the southern slopes of the San Gabriel
Mountains (Pasadena and Azusa) have significantly higher oxidant levels -

than cities locaﬁed‘in the eastern ﬁortion of the basin (Riverside and San
Bernardino) and that non-Los Angeles County oxidant dosages have been sub-
stantially lower than has been believed. These two conclusions significantly
alter current views of the oxidant problem in the South Coast Air Basin and
have important ramifications for the understanding and control of photo-

chemical. oxidant.
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